Computation of the Euclidean minimum of algebraic number fields
LEZOWSKI, Pierre
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
LEZOWSKI, Pierre
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
< Leer menos
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Idioma
en
Article de revue
Este ítem está publicado en
Mathematics of Computation. 2014, vol. 83, p. 1397-1426
American Mathematical Society
Resumen en inglés
We present an algorithm to compute the Euclidean minimum of an algebraic number field, which is a generalization of the algorithm restricted to the totally real case described by Cerri. With a practical implementation, we ...Leer más >
We present an algorithm to compute the Euclidean minimum of an algebraic number field, which is a generalization of the algorithm restricted to the totally real case described by Cerri. With a practical implementation, we obtain unknown values of the Euclidean minima of algebraic number fields of degree up to 8 in any signature, especially for cyclotomic fields, and many new examples of norm-Euclidean or non-norm-Euclidean algebraic number fields. We also prove a result of independant interest concerning real quadratic fields whose Euclidean minimum is equal to 1.< Leer menos
Proyecto europeo
Algorithmic Number Theory in Computer Science
Orígen
Importado de HalCentros de investigación