Optimal stopping for partially observed piecewise-deterministic Markov processes
DE SAPORTA, Benoîte
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
DUFOUR, François
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
DE SAPORTA, Benoîte
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
DUFOUR, François
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
< Leer menos
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Idioma
en
Article de revue
Este ítem está publicado en
Stochastic Processes and their Applications. 2013, vol. 123, p. 3201-3238
Elsevier
Resumen en inglés
This paper deals with the optimal stopping problem under partial observation for piecewise-deterministic Markov processes. We first obtain a recursive formulation of the optimal filter process and derive the dynamic ...Leer más >
This paper deals with the optimal stopping problem under partial observation for piecewise-deterministic Markov processes. We first obtain a recursive formulation of the optimal filter process and derive the dynamic programming equation of the partially observed optimal stopping problem. Then, we propose a numerical method, based on the quantization of the discrete-time filter process and the inter-jump times, to approximate the value function and to compute an actual $\epsilon$-optimal stopping time. We prove the convergence of the algorithms and bound the rates of convergence.< Leer menos
Orígen
Importado de HalCentros de investigación