Predictive maintenance for the heated hold-up tank
DE SAPORTA, Benoîte
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
ZHANG, Huilong
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
DE SAPORTA, Benoîte
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
ZHANG, Huilong
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
< Reduce
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Language
en
Article de revue
This item was published in
Reliability Engineering and System Safety. 2013, vol. 115, p. 82-90
Elsevier
English Abstract
We present a numerical method to compute an optimal maintenance date for the test case of the heated hold-up tank. The system consists of a tank containing a fluid whose level is controlled by three components: two inlet ...Read more >
We present a numerical method to compute an optimal maintenance date for the test case of the heated hold-up tank. The system consists of a tank containing a fluid whose level is controlled by three components: two inlet pumps and one outlet valve. A thermal power source heats up the fluid. The failure rates of the components depends on the temperature, the position of the three components monitors the liquid level in the tank and the liquid level determines the temperature. Therefore, this system can be modeled by a hybrid process where the discrete (components) and continuous (level, temperature) parts interact in a closed loop. We model the system by a piecewise deterministic Markov process, propose and implement a numerical method to compute the optimal maintenance date to repair the components before the total failure of the system.Read less <
Origin
Hal imported