High order preserving residual distribution schemes for advection-diffusion scalar problems on arbitrary grids
ABGRALL, Remi
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
DE SANTIS, Dante
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
RICCHIUTO, Mario
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
ABGRALL, Remi
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
DE SANTIS, Dante
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
RICCHIUTO, Mario
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
< Leer menos
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Idioma
en
Rapport
Este ítem está publicado en
2012-11-30p. 46
Resumen
Dans ce rapport, nous construisons une classe de schémas distribuant le résidu d'ordre très élevé adaptée aux problémes de convection diffusion. Les maillages employés sont non structurés arbitraires mais conformes. Les ...Leer más >
Dans ce rapport, nous construisons une classe de schémas distribuant le résidu d'ordre très élevé adaptée aux problémes de convection diffusion. Les maillages employés sont non structurés arbitraires mais conformes. Les problèmes considérés vont de la diffusion pure à la convection pure. L'approximation numérique est obtenue en considérant des éléments finis de type Lagrange. Le résidu total est construit en prenant en compte simultanément les termes advectifs et diffusifs. Au travers des éléments, le gradient de l'approximation polynômiale est discontinu, ce qui conduit à considérer plusieurs types de reconstruction du gradient, afin d'en obtenir une approximation globalement continue avec le même type d'approximation polynômiale. Des variantes linéaires et non linéaires du schéma sont construites et testés sur des problèmes d'advection-diffusion linéaire, Burger visqueux, un problème de diffusion anisotrope et un probléme à viscosité évanescente. On montre que l'on obtient l'ordre trois dans toutes ces situations au moyen d'une méthode locale.< Leer menos
Resumen en inglés
This paper deals with the construction of a class of high order accurate Residual Distribution schemes for advection-diffusion problems using conformal meshes. The problems we consider range from pure difusion to pure ...Leer más >
This paper deals with the construction of a class of high order accurate Residual Distribution schemes for advection-diffusion problems using conformal meshes. The problems we consider range from pure difusion to pure advection. The approximation of the solution is obtained using standard Lagrangian finite elements and the total residual of the problem is constructed taking into account both the advective and the diffusive terms in order to discretize with the same scheme both parts of the governing equation. To cope with the fact that the normal component of the gradients of the numerical solution is discontinuous across the faces of the elements, the gradient of the numerical solution is recovered at each degree of freedom of the grid and then interpolated with the same shape functions used for the solution. Linear and non-linear schemes are constructed and their accuracy is tested with the discretization of advection-diffusion and anisotropic diffusion problems.This paper deals with the construction of a class of high order accurate Residual Distribution schemes for advection-diffusion problems using conformal meshes. The problems we consider range from pure difusion to pure advection. The approximation of the solution is obtained using standard Lagrangian finite elements and the total residual of the problem is constructed taking into account both the advective and the diffusive terms in order to discretize with the same scheme both parts of the governing equation. To cope with the fact that the normal component of the gradients of the numerical solution is discontinuous across the faces of the elements, the gradient of the numerical solution is recovered at each degree of freedom of the grid and then interpolated with the same shape functions used for the solution. Linear and non-linear schemes are constructed and their accuracy is tested with the discretization of advection-diffusion and anisotropic diffusion problems.< Leer menos
Palabras clave en inglés
Higher order schemes
Residual distribution
Viscous term
Advection-diffusion problems
Gradient recovery
Orígen
Importado de HalCentros de investigación