How to improve the decay of the numerical error for large times: the case of dissipative BGK systems
Langue
en
Communication dans un congrès
Ce document a été publié dans
AIMS series in Applied Mathematics, Hyperbolic Problems: Theory, Numerics, Applications, Hyperbolic Problems: Theory, Numerics, Applications, HYP2012 Padova, 2012. 2014, vol. 8, p. 365-372
American Institute of Mathematical Sciences
Résumé en anglais
We introduce new finite differences schemes to approximate one dimensional dissipative semilinear hyperbolic systems with a BGK structure. Using accurate analytical time-decay properties of the local truncation error, it ...Lire la suite >
We introduce new finite differences schemes to approximate one dimensional dissipative semilinear hyperbolic systems with a BGK structure. Using accurate analytical time-decay properties of the local truncation error, it is possible to design schemes based on standard upwinding schemes, which are increasingly accurate for large times when computing small perturbations of constants asymptotic states.< Réduire
Origine
Importé de halUnités de recherche