An introduction to dimension reduction in nonparametric kernel regression
SARACCO, Jerôme
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Ecole Nationale Supérieure de Cognitique [ENSC]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Ecole Nationale Supérieure de Cognitique [ENSC]
SARACCO, Jerôme
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Ecole Nationale Supérieure de Cognitique [ENSC]
< Leer menos
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Ecole Nationale Supérieure de Cognitique [ENSC]
Idioma
en
Chapitre d'ouvrage
Este ítem está publicado en
Regression methods for astrophysics, Regression methods for astrophysics. 2014, vol. 66, p. 167-196
EDP Sciences
Resumen en inglés
Nonparametric regression is a powerful tool to estimate nonlinear relations between some predictors and a response variable. However, when the number of predictors is high, nonparametric estimators may suffer from the curse ...Leer más >
Nonparametric regression is a powerful tool to estimate nonlinear relations between some predictors and a response variable. However, when the number of predictors is high, nonparametric estimators may suffer from the curse of dimensionality. In this chapter, we show how a dimension reduction method (namely Sliced Inverse Regression) can be combined with nonparametric kernel regression to overcome this drawback. The methods are illustrated both on simulated datasets as well as on an astronomy dataset using the R software.< Leer menos
Orígen
Importado de HalCentros de investigación