Kernel and eigenfunction estimates for some second order elliptic operators
RHANDI, Abdelaziz
Department of Information Engineering, Electrical Engineering and Applied Mathematics [DIEM]
Department of Information Engineering, Electrical Engineering and Applied Mathematics [DIEM]
RHANDI, Abdelaziz
Department of Information Engineering, Electrical Engineering and Applied Mathematics [DIEM]
< Leer menos
Department of Information Engineering, Electrical Engineering and Applied Mathematics [DIEM]
Idioma
en
Article de revue
Este ítem está publicado en
Journal of Mathematical Analysis and Applications. 2012, vol. 387, n° 2, p. 799-806
Elsevier
Resumen en inglés
For a potential V such that V (x) |x|α with α > 2 we prove that the heat kernel kt (x, y) associated to the uniformly elliptic operator A =− nj ,k=1 ∂k(a jk∂ j ) + V satisfies the estimate kt (x, y) Ce−μ0tect−b e− 2 √ θ ...Leer más >
For a potential V such that V (x) |x|α with α > 2 we prove that the heat kernel kt (x, y) associated to the uniformly elliptic operator A =− nj ,k=1 ∂k(a jk∂ j ) + V satisfies the estimate kt (x, y) Ce−μ0tect−b e− 2 √ θ α+2 |x|1+α2 |x|α4 +n−1 2 e− 2 √ θ α+2 |y|1+α2 |y|α4 +n−1 2 for large x, y ∈ Rn and all t > 0. Here 0 < θ 1 is an appropriate constant, b > α+2 α−2 and μ0 is the first eigenvalue of A. We also obtain an estimate for large |x| of the eigenfunctions of A. ©< Leer menos
Palabras clave en inglés
Heat kernels Schrödinger operators Eigenfunctions Log-Sobolev inequality
Orígen
Importado de HalCentros de investigación