Lagrangian velocity in fully developped turbulence : scaling, intermittency and dynamics
ARNÉODO, A.
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
< Réduire
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Statistical Physics. 2003, vol. 113-5, n° 5/6, p. 701-717
Springer Verlag
Résumé en anglais
New aspects of turbulence are uncovered if one considers the flow motion from the perspective of a fluid particle (known as the Lagrangian approach) rather than in terms of a velocity field (the Eulerian viewpoint). Using ...Lire la suite >
New aspects of turbulence are uncovered if one considers the flow motion from the perspective of a fluid particle (known as the Lagrangian approach) rather than in terms of a velocity field (the Eulerian viewpoint). Using a new experimental technique, based on the scattering of ultrasound, we have obtained a direct measurement of particle velocities, resolved at all scales, in a fully turbulent flow. We find that the Lagrangian velocity autocorrelation function and the Lagrangian time spectrum are in agreement with the Kolmogorov K41 phenomenology. Intermittency corrections are observed and we give a measurement of the Lagrangian structure function exponents. They are more intermittent than the corresponding Eulerian exponents. We also propose a novel analysis of intermittency in turbulence: our measurement enables us to study it from a dynamical point of view. We thus analyze the Lagrangian velocity fluctuations in the framework of random walks. We find experimentally that the elementary steps in the “walk” have random uncorrelated directions but a magnitude that displays extremely long-range correlations in time. Theoretically, we study a Langevin equation that incorporates these features and we show that the resulting dynamics accounts for the observed one-point and two-point statistical properties of the Lagrangian velocity fluctuations. Our approach connects the intermittent statistical nature of turbulence to the dynamics of the flow.< Réduire
Origine
Importé de halUnités de recherche