Metadatos
Mostrar el registro completo del ítemCompartir este ítem
Metabolic Recruitment in Brain Tissue
FERNANDEZ-MONCADA, Ignacio
Neurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
< Leer menos
Neurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
Idioma
EN
Article de revue
Este ítem está publicado en
Annual Review of Physiology. 2023-02-10, vol. 85, p. 115-135
Resumen en inglés
Information processing imposes urgent metabolic demands on neurons, which have negligible energy stores and restricted access to fuel. Here, we discuss metabolic recruitment, the tissue-level phenomenon whereby active ...Leer más >
Information processing imposes urgent metabolic demands on neurons, which have negligible energy stores and restricted access to fuel. Here, we discuss metabolic recruitment, the tissue-level phenomenon whereby active neurons harvest resources from their surroundings. The primary event is the neuronal release of K+ that mirrors workload. Astrocytes sense K+ in exquisite fashion thanks to their unique coexpression of NBCe1 and α2β2 Na+/K+ ATPase, and within seconds switch to Crabtree metabolism, involving GLUT1, aerobic glycolysis, transient suppression of mitochondrial respiration, and lactate export. The lactate surge serves as a secondary recruiter by inhibiting glucose consumption in distant cells. Additional recruiters are glutamate, nitric oxide, and ammonium, which signal over different spatiotemporal domains. The net outcome of these events is that more glucose, lactate, and oxygen are made available. Metabolic recruitment works alongside neurovascular coupling and various averaging strategies to support the inordinate dynamic range of individual neurons. Copyright © 2023 by the author(s).< Leer menos
Palabras clave en inglés
Neurons
Astrocytes
Glucose
Lactate
Oxygen
Glycolysis
Mitochondria
Centros de investigación