The role of advection and density gradients in driving the residual circulation along a macrotidal and convergent estuary with non-idealized geometry
Idioma
EN
Article de revue
Este ítem está publicado en
Continental Shelf Research. 2021-01-01, vol. 212, p. 104295
Resumen en inglés
Due to variations in channel depth, width, and lateral bottom profile, estuarine residual flows can exhibit significant variation in magnitude and transverse structure along macrotidal and convergent estuaries. This article ...Leer más >
Due to variations in channel depth, width, and lateral bottom profile, estuarine residual flows can exhibit significant variation in magnitude and transverse structure along macrotidal and convergent estuaries. This article explores the along-channel residual flow (magnitude and transverse structure), forcing mechanisms and their variations along the Gironde estuary in France. With emphasis on the role of density gradient and the advective accelerations in the along channel momentum balance, the study outlines the along-channel residual flows and forcing mechanisms over the neap-spring tidal cycle during high and low river discharge conditions. The results demonstrate that the density-driven flow contribution to total residual flows is, approximately, 75% (along-channel averaged) during neap tide and 18% during spring tide for both high and low river discharge scenarios. Owing to the complex lateral variation in the channel depth and the constriction near the mouth, advective accelerations play a major role in altering the residual flow lateral structure. However, the relative importance of advection reduces in the main body of the estuary where the channel is widened with poor lateral variation in the bottom depth. The results suggest advection and the baroclinic pressure gradient produce a laterally sheared along-channel residual flow with inflow in the channel and outflow over the shoals during neap tide. During spring tide, this lateral structure is produced due to advection. The results show that even in a homogenous system, advection can induce a flow with a structure that mimics the density-driven flow. The article shows that along macrotidal estuaries the presence of complex morphological features can affect the residual flow dynamics. As such, the residual flow in these systems should be schematized not only by considering the lateral variation of bathymetry, but also the along channel complexity.< Leer menos
Centros de investigación