Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierESTIA INSTITUTE OF TECHNOLOGY
dc.contributor.authorETXEGARAI, Garazi
hal.structure.identifierESTIA INSTITUTE OF TECHNOLOGY
dc.contributor.authorZAPIRAIN, Irati
hal.structure.identifierESTIA INSTITUTE OF TECHNOLOGY
dc.contributor.authorCAMBLONG, Haritza
dc.contributor.authorUGARTEMENDIA, Juanjo
dc.contributor.authorHERNANDEZ, Juan
hal.structure.identifierESTIA INSTITUTE OF TECHNOLOGY
dc.contributor.authorCUREA, Octavian
ORCID: 0000-0002-5030-2088
IDREF: 68259131
dc.date.accessioned2024-01-18T13:04:32Z
dc.date.available2024-01-18T13:04:32Z
dc.date.issued2022-11-28
dc.identifier.issn2076-3417en_US
dc.identifier.urioai:crossref.org:10.3390/app122312171
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/187333
dc.description.abstractEnThe existing trend towards increased penetration of renewable energies in the traditional grid, and the intermittent nature of the weather conditions on which these energy sources depend, make the development of tools for the forecasting of renewable energy production more necessary than ever. Likewise, the prediction of the energy generated in these renewable production plants is key to the implementation of efficient Energy Management Systems (EMS) in buildings. These will aim both to increase the energy efficiency of the building itself, as well as to encourage self-consumption or, where appropriate, collective self-consumption (CSC). This paper presents a comparison between four different models, the former one being an analytical model and the remaining three machine learning (ML) based models. All of them will forecast the photovoltaic (PV) production curve for the next day. In order to validate these models, a case study of a PV system installed on the roof of a university building located in Bidart (France) is proposed. The model that most accurately forecasts the PV production during the period of July 2021 is the support vector regression (SVR), which has a mean R2 of 0.934 for July, being 0.97 on sunny days and 0.85 on cloudy ones. This is an improvement of 5.14%, 4.07%, and 4.18% over the nonlinear autoregressive with exogenous inputs (NARX), feedforward neural network (FFNN), and analytical model, respectively.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourcecrossref
dc.subject.enPV production forecasting
dc.subject.enArtificial intelligence Machine learning
dc.subject.enFeedforward neural network
dc.subject.enSupport vector regression
dc.subject.enNonlinear autoregressive exogenous
dc.subject.enOpenModelica
dc.subject.enAnalytical model
dc.title.enPhotovoltaic Energy Production Forecasting in a Short Term Horizon: Comparison between Analytical and Machine Learning Models
dc.typeArticle de revueen_US
dc.identifier.doi10.3390/app122312171en_US
dc.subject.halSciences de l'ingénieur [physics]en_US
bordeaux.journalApplied Sciencesen_US
bordeaux.page12171en_US
bordeaux.volume12en_US
bordeaux.hal.laboratoriesESTIA - Rechercheen_US
bordeaux.issue23en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionBordeaux Sciences Agroen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-04402973
hal.version1
hal.date.transferred2024-01-18T13:04:36Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Applied%20Sciences&rft.date=2022-11-28&rft.volume=12&rft.issue=23&rft.spage=12171&rft.epage=12171&rft.eissn=2076-3417&rft.issn=2076-3417&rft.au=ETXEGARAI,%20Garazi&ZAPIRAIN,%20Irati&CAMBLONG,%20Haritza&UGARTEMENDIA,%20Juanjo&HERNANDEZ,%20Juan&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée