Afficher la notice abrégée

hal.structure.identifierLaboratory of Organic Electronics
dc.contributor.authorSULTANA, Ayesha
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorWÜRGER, Alois
hal.structure.identifierLaboratory of Organic Electronics
dc.contributor.authorKHAN, Ziyauddin
hal.structure.identifierLaboratory of Organic Electronics [Norrköping, Sweden] [Department of Science and Technology]
dc.contributor.authorLIAO, Mingna
hal.structure.identifierLaboratory of Organic Electronics
dc.contributor.authorJONSSON, Magnus
hal.structure.identifierLaboratory of Organic Electronics
dc.contributor.authorCRISPIN, Reverant
hal.structure.identifierLaboratory of Organic Electronics
dc.contributor.authorZHAO, Dan
dc.date.accessioned2023-12-17T03:27:26Z
dc.date.available2023-12-17T03:27:26Z
dc.date.issued2023-12-05
dc.identifier.issn1613-6810
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/186672
dc.description.abstractEn<jats:title>Abstract</jats:title><jats:p>Ionic thermoelectric materials can generate large thermal voltages under temperature gradients while also being low‐cost and environmentally friendly. Many electrolytes with large Seebeck coefficients are reported in recent years, however, the mechanism of the thermal voltage is remained elusive. In this work, three types of polyelectrolytes are studied with different cations and identified a significant contribution to their thermal voltage originating from a concentration gradient. This conclusion is based on studies of the loss and gain of water upon temperature changes, variations in conductivity with water content and temperature, and the voltages induced by changes in water content. The results are analyzed by the “hopping mode” dynamics of charge transport in electrolytes. The hydration of different cations influences the water concentration gradient, which affects the barrier height and ion‐induced potential in the electrodes. This work shows that the hydro‐voltage in ionic thermoelectric devices can be one order of magnitude larger than the contribution from thermodiffusion‐induced potentials, and becomes the main contributor to energy harvesting when implemented into ionic thermoelectric supercapacitors. Together with the rationalized theoretical discussion, this work clarifies the mechanism of thermal voltages in electrolytes and provides a new path for the development of ionic thermoelectric materials.</jats:p>
dc.language.isoen
dc.publisherWiley-VCH Verlag
dc.title.enThe Origin of Thermal Gradient‐Induced Voltage in Polyelectrolytes
dc.typeArticle de revue
dc.identifier.doi10.1002/smll.202308102
dc.subject.halPhysique [physics]
dc.subject.halChimie/Polymères
bordeaux.journalSmall
bordeaux.hal.laboratoriesLaboratoire Ondes et Matière d'Aquitaine (LOMA) - UMR 5798*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-04348315
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04348315v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Small&amp;rft.date=2023-12-05&amp;rft.eissn=1613-6810&amp;rft.issn=1613-6810&amp;rft.au=SULTANA,%20Ayesha&amp;W%C3%9CRGER,%20Alois&amp;KHAN,%20Ziyauddin&amp;LIAO,%20Mingna&amp;JONSSON,%20Magnus&amp;rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée