Kraft black liquor as a carbonaceous source for the generation of porous monolithic materials and applications toward hydrogen adsorption and ultrastable supercapacitors
POUPART, Romain
Institut des Sciences Moléculaires [ISM]
Centre de Recherche Paul Pascal [CRPP]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Institut des Sciences Moléculaires [ISM]
Centre de Recherche Paul Pascal [CRPP]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
GUERLOU-DEMOURGUES, Liliane
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Voir plus >
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
POUPART, Romain
Institut des Sciences Moléculaires [ISM]
Centre de Recherche Paul Pascal [CRPP]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Institut des Sciences Moléculaires [ISM]
Centre de Recherche Paul Pascal [CRPP]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
GUERLOU-DEMOURGUES, Liliane
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
OLCHOWKA, Jacob
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
< Réduire
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Langue
en
Article de revue
Ce document a été publié dans
Langmuir. 2023, vol. 39, n° 46, p. 16385-16394
American Chemical Society
Résumé en anglais
High internal phase emulsions (HIPEs) have templated self-standing porous carbonaceous materials (carboHIPEs) while employing Kraft Black Liquor, a paper milling industry byproduct, as a carbon precursor source. As such, ...Lire la suite >
High internal phase emulsions (HIPEs) have templated self-standing porous carbonaceous materials (carboHIPEs) while employing Kraft Black Liquor, a paper milling industry byproduct, as a carbon precursor source. As such, the starting emulsion has been prepared through a laboratory-made homogenizer, while native materials have been characterized at various length scales either with Raman spectrometry, X-ray diffraction (XRD), mercury intrusion porosimetry, and nitrogen absorption. After thermal carbonization, specific surface areas ranging from ∼600 m2 g–1 to 1500 m2 g–1 have been reached while maintaining a monolithic character. Despite a poor graphitization yield, the carbonaceous materials offer good electronic transport properties, reaching 31 S m–1. When tested toward energy storage applications, the native unwashed materials revealed a hydrogen storage of 0.07 wt % at 40 bar and room temperature (RT), while hydrogen retention is reaching 0.37 wt % at 40 bar and RT for the washed sample. When employed as supercapacitor electrodes, these carbonaceous foams are able to deliver high capacities of ∼140 F/g at 1 A/g, thereby matching the ones obtained from a commercial carbon reference, while additionally providing a restored remnant capacity of 120 F/g at 2 A/g over 5000 cycle numbers.< Réduire
Mots clés en anglais
Adsorption
Diffraction
Electrodes
Emulsions
Materials
Origine
Importé de halUnités de recherche