Optimal sizes of iron oxide nanoflowers for magnetic hyperthermia depend on the alternating magnetic field conditions
BEJKO, Megi
Laboratoire de Chimie des Polymères Organiques [LCPO]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Laboratoire de Chimie des Polymères Organiques [LCPO]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
AL YAMAN, Yasmina
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
KEYES, Anthony
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Leer más >
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
BEJKO, Megi
Laboratoire de Chimie des Polymères Organiques [LCPO]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Laboratoire de Chimie des Polymères Organiques [LCPO]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
AL YAMAN, Yasmina
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
KEYES, Anthony
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
SANDRE, Olivier
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
< Leer menos
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Idioma
en
Document de travail - Pré-publication
Resumen en inglés
Iron oxide nanoflowers can be synthesized through a polyol route firstly introduced almost 2 decades ago by Caruntu et al, presenting multi-core morphology, several grains (around 10 nm) being attached together (and obviously ...Leer más >
Iron oxide nanoflowers can be synthesized through a polyol route firstly introduced almost 2 decades ago by Caruntu et al, presenting multi-core morphology, several grains (around 10 nm) being attached together (and obviously sintered). These IONFs present outstanding properties for magnetic field hyperthermia, which is considered as promising therapy against cancer. Although they have a significantly smaller diameter, the specific adsorption rate (SAR) of IONFs can reach values of the order of 1 kW•g-1 , as large as for "magnetosomes" that are natural magnetic nanoparticles typically ∼40 nm found in certain bacteria, which can be grown artificially but with lower yield compared to chemical synthesis. This work aims at better understanding the structure-property relationships between the internal nanostructure of IONFs as observed by HR-TEM and their properties, in particular magnetic ones. A library of mono and multicore IONFs is presented, with diameters ranging from 11 to 30 nm and narrow size dispersity. By relating their structural features (diameter, morphology, defects…) to their magnetic properties investigated in particular by AC magnetometry over a wide range of alternating magnetic field (AMF) conditions, the SAR values of all synthesized batches vary with overall diameter and number of constituting cores in qualitative agreement with theoretical predictions by the Linear Response Theory (LRT) at low fields or with the Stoner-Wohlfarth (SW) model for larger amplitudes, and with numerical simulations reported previously, in particular by showing a pronounced maximum at an IONF diameter of 22 nm.< Leer menos
Palabras clave en inglés
magnetic nanoparticles
polyol synthesis
multicore iron oxide nanoflowers
magnetic hyperthermia
specific absorption rate
AC magnetometry
dynamic hysteresis loops
HR-TEM
Fast Fourier Transformation (FFT)
structural defects
disclination lines
planar inclusions
DC magnetization curves
specific magnetization
Field cooled and zero field cooled magnetization curves
effective magnetic anisotropy constant
Linear Response Theory (LRT)
Stoner-Wohlfarth (SW) model
Proyecto ANR
Mortalité Cellulaire Induite par Rotation de VEsicules Magnétiques - ANR-19-CE09-0024
Modifications chimiques de la surface interne de NPs PEGylées pour orienter l'identité biologique de la protein corona vers des macrophages de la plaque d'athérome
Modifications chimiques de la surface interne de NPs PEGylées pour orienter l'identité biologique de la protein corona vers des macrophages de la plaque d'athérome
Orígen
Importado de HalCentros de investigación