Stacking faults in an O2-type cobalt-free lithium-rich layered oxide: mechanisms of the ion exchange reaction and lithium electrochemical (de)intercalation
Language
en
Article de revue
This item was published in
Chemistry of Materials. 2023
American Chemical Society
Date
2023English Abstract
The metastable O2-type cobalt-free lithium-rich layered oxide Li0.84Ni0.14Mn0.72O2 was successfully prepared by a new all solid-state ion-exchange reaction from the P2-type sodium layered oxide precursor Na0.7[Li0.14Ni0. ...Read more >
The metastable O2-type cobalt-free lithium-rich layered oxide Li0.84Ni0.14Mn0.72O2 was successfully prepared by a new all solid-state ion-exchange reaction from the P2-type sodium layered oxide precursor Na0.7[Li0.14Ni0.14Mn0.72]O2 using lithium chloride at moderate temperature. The particular oxygen stacking in the resulting O2-type structure is assumed to suppress the detrimental layer-to-spinel phase transition usually observed upon cycling in conventional O3-type lithium-rich layered oxides due to the irreversible migration of transition metal cations, causing substantial voltage decay and capacity fading. Despite the existence of stacking faults originating from the P2-to-O2 topotactic reaction during the Na+-to-Li+ exchange, evidenced by X-ray diffraction simulation and high-resolution microcopy, the electrochemical tests conducted on the faulted O2-type positive electrode material revealed a greatly improved reversible (de)intercalation mechanism along with high specific capacity values. An operando X-ray diffraction study indicated that there are only small structural changes upon cycling and that they are stable and reversible. Moreover, operando X-ray absorption spectroscopy experiments showed that a large part of the capacity relies on the oxygen redox which is also reversible upon cycling.Read less <
Origin
Hal imported