Hydrogen production properties of aluminum–magnesium alloy presenting β-phase Al3Mg2
SILVAIN, Jean-François
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Department of Electrical and Computer Engineering
See more >
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Department of Electrical and Computer Engineering
SILVAIN, Jean-François
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Department of Electrical and Computer Engineering
< Reduce
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Department of Electrical and Computer Engineering
Language
en
Article de revue
This item was published in
Metals. 2023, vol. 13, n° 11, p. 1868
MDPI
English Abstract
In this study, aluminum-magnesium (Al-Mg) bulk porous materials were fabricated by using uniaxial hot pressing to control the porosity rate of the material over a wide range (up to 50%). The fabricated materials were ...Read more >
In this study, aluminum-magnesium (Al-Mg) bulk porous materials were fabricated by using uniaxial hot pressing to control the porosity rate of the material over a wide range (up to 50%). The fabricated materials were analyzed by X-ray diffraction and scanning electron microscopy. The results demonstrated the appearance of intermetallic (IM) phase Al 3 Mg 2 , and its quantity increased with the applied pressure. In the context of the decline of global fossil fuel reserves, the revalorization of these materials by hydrogen (H 2) production was investigated. Hydrolysis of the Al-Mg materials was carried out in a simulated seawater solution (aqueous solution of sodium chloride 35 g/L). The results showed the role of the porosity rate in the H 2 production properties of the fabricated materials; the increase of porosity rate from 10% to 50% cuts the reaction time in half. Finally, the role of IM phase Al 3 Mg 2 in H 2 production was highlighted through galvanic coupling.Read less <
English Keywords
Al-Mg alloys
intermetallic phases
uniaxial hot pressing
hydrogen production
hydrolysis
ANR Project
SOLid storage of HYDdrogen: new strategies, new materials
Origin
Hal imported