Afficher la notice abrégée

dc.contributor.authorSALTAS, V
hal.structure.identifierCentre d'Etudes Nucléaires de Bordeaux Gradignan [CENBG]
dc.contributor.authorHORLAIT, D
dc.contributor.authorSGOUROU, E.N
dc.contributor.authorVALLIANATOS, F
dc.contributor.authorCHRONEOS, A
dc.date.accessioned2023-11-20T16:35:17Z
dc.date.available2023-11-20T16:35:17Z
dc.date.issued2017
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/184943
dc.description.abstractEnModelling solid solutions is fundamental in understanding the properties of numerous materials which are important for a range of applications in various fields including nanoelectronics and energy materials such as fuel cells, nuclear materials, and batteries, as the systematic understanding throughout the composition range of solid solutions for a range of conditions can be challenging from an experimental viewpoint. The main motivation of this review is to contribute to the discussion in the community of the applicability of methods that constitute the investigation of solid solutions computationally tractable. This is important as computational modelling is required to calculate numerous defect properties and to act synergistically with experiment to understand these materials. This review will examine in detail two examples: silicon germanium alloys and MAX phase solid solutions. Silicon germanium alloys are technologically important in nanoelectronic devices and are also relevant considering the recent advances in ternary and quaternary groups IV and III-V semiconductor alloys. MAX phase solid solutions display a palette of ceramic and metallic properties and it is anticipated that via their tuning they can have applications ranging from nuclear to aerospace industries as well as being precursors for particular MXenes. In the final part, a brief summary assesses the limitations and possibilities of the methodologies discussed, whereas there is discussion on the future directions and examples of solid solution systems that should prove fruitful to consider.
dc.language.isoen
dc.title.enModelling solid solutions with cluster expansion, special quasirandom structures, and thermodynamic approaches
dc.typeArticle de revue
dc.identifier.doi10.1063/1.4999129
dc.subject.halPhysique [physics]/Physique [physics]/Physique Générale [physics.gen-ph]
bordeaux.journalAppl.Phys.Rev
bordeaux.page041301
bordeaux.volume4
bordeaux.hal.laboratoriesCentre d'Études Nucléaires de Bordeaux Gradignan (CENBG)*
bordeaux.issue4
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-04231302
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04231302v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Appl.Phys.Rev&rft.date=2017&rft.volume=4&rft.issue=4&rft.spage=041301&rft.epage=041301&rft.au=SALTAS,%20V&HORLAIT,%20D&SGOUROU,%20E.N&VALLIANATOS,%20F&CHRONEOS,%20A&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée