Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorNAHON, Alphonse
dc.contributor.authorIDIER, Deborah
dc.contributor.authorBERTIN, Xavier
dc.contributor.authorGUERIN, Thomas
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorMARIEU, Vincent
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorSENECHAL, Nadia
IDREF: 077248430
dc.contributor.authorMUGICA, Julie
dc.date.accessioned2023-11-08T14:48:53Z
dc.date.available2023-11-08T14:48:53Z
dc.date.issued2022-03-01
dc.identifier.issn0378-3839en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/184690
dc.description.abstractEnWind waves breaking at an angle with the shoreline force the drifting of littoral sediments, which is known for contributing to the formation and growth of barrier spits. Intriguingly, increased rates of longshore wave power have also been associated with the erosion of some barrier spits on the updrift margin of tidal inlets. Therefore, a numerical experiment was designed and is presented here, which investigates the possible links between the longshore wave power and the shortening of these elongated coastal barriers. Based on a process-based model, the experiment provides new insights into the forces at play in the redistribution of sediments between a sandspit and its adjacent inlet, respectively the Cap Ferret and the Bay of Arcachon's tidal inlet, in SW France. More particularly, model scenarios were defined that show how combined waves and tide create gradients of residual sediment transport responsible for a sediment deficit at the spit – inlet boundary. The deficit was also found to deepen with increasing longshore wave energy, as if the transfer of sediment from the spit to inlet shoals was accelerated. This physically explains the previously observed retreat of the spit's distal end during periods dominated by the positive phase of North Atlantic Oscillation (NAO) in winter. Indeed, according to model results, higher and/or more oblique waves associated with the positive phase of the NAO are expected to increase the transfer and storage of the drifting sediments to and by the inlet shoals, and this at the expense of the spit. While these conclusions remain valid, we noticed that the sensitivity of model results to the bottom friction enhanced the importance of accurately representing the spatio-temporal distribution of bed roughness when investigating the morphodynamic interactions between real-world tidal inlets and their margins.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enSandspit
dc.subject.enTidal inlet
dc.subject.enSediment transport
dc.subject.enWave power
dc.subject.enNAO
dc.subject.enSCHISM
dc.title.enModelling the contribution of wind waves to Cap Ferret's updrift erosion
dc.title.alternativeCoastal Engineeringen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.coastaleng.2021.104063en_US
dc.subject.halSciences de l'environnementen_US
bordeaux.journalCoastal Engineeringen_US
bordeaux.volume172en_US
bordeaux.hal.laboratoriesEPOC : Environnements et Paléoenvironnements Océaniques et Continentaux - UMR 5805en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.teamMETHYSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Coastal%20Engineering&rft.date=2022-03-01&rft.volume=172&rft.eissn=0378-3839&rft.issn=0378-3839&rft.au=NAHON,%20Alphonse&IDIER,%20Deborah&BERTIN,%20Xavier&GUERIN,%20Thomas&MARIEU,%20Vincent&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée