Metadata
Show full item recordShare this item!
Challenging the traditional approach for interpreting genetic variants: Lessons from Fabry disease.
Language
EN
Article de revue
This item was published in
Clinical Genetics. 2022-04-01, vol. 101, n° 4, p. 390-402
English Abstract
Fabry disease (FD) is an X-linked genetic disease due to pathogenic variants in GLA. The phenotype varies depending on the GLA variant, alpha-galactosidase residual activity, patient's age and gender and, for females, X ...Read more >
Fabry disease (FD) is an X-linked genetic disease due to pathogenic variants in GLA. The phenotype varies depending on the GLA variant, alpha-galactosidase residual activity, patient's age and gender and, for females, X chromosome inactivation. Over 1000 variants have been identified, many through screening protocols more susceptible to disclose non-pathogenic variants or variants of unknown significance (VUS). This, together with the non-specificity of some FD symptoms, challenges physicians attempting to interpret GLA variants. The traditional way to interpreting pathogenicity is based on a combined approach using allele frequencies, genomic databases, global and disease-specific clinical databases, and in silico tools proposed by the American College of Medical Genetics and Genomics. Here, a panel of FD specialists convened to study how expertise may compare with the traditional approach. Several GLA VUS, highly controversial in the literature (p.Ser126Gly, p.Ala143Thr, p.Asp313Tyr), were re-analyzed through reviews of patients' charts. The same was done for pathogenic GLA variants with some specificities. Our data suggest that input of geneticists and physicians with wide expertise in disease phenotypes, prevalence, inheritance, biomarkers, alleles frequencies, disease-specific databases, and literature greatly contribute to a more accurate interpretation of the pathogenicity of variants, bringing a significant additional value over the traditional approach.Read less <
English Keywords
Fabry Disease
Female
Gene Frequency
Humans
Mutation
Phenotype
alpha-Galactosidase