Cockle infection by Himasthla quissetensis – II. The theoretical effects of climate change
Language
EN
Article de revue
This item was published in
Journal of Sea Research (JSR). 2015-01-01
English Abstract
Numerous marine populations experience parasite pressure. This is the case of the cockles Cerastoderma edule which are often highly infected by trematode macroparasites. These parasites display a complex life cycle, with ...Read more >
Numerous marine populations experience parasite pressure. This is the case of the cockles Cerastoderma edule which are often highly infected by trematode macroparasites. These parasites display a complex life cycle, with a succession of free-living and parasitic stages. Climate, and in particular temperature, is an important modulator of the transmission dynamics of parasites. Consequently, global change is thought to have implications for the epidemiology of infectious diseases. Using Himasthla quissetensis, a dominant parasite of cockles as 2nd intermediate host in Arcachon Bay (France), we used mathematical models of parasite emergence (cercariae) and parasite infection (metacercariae) in cockles as a function of water temperature, in order to study different scenarios of temperature increases. Globally, with a + 0.5 °C to + 6.0 °C simulation, cumulated emergence of cercariae and accumulation of metacercariae tended to decrease or stagnate, respectively. This is the consequence of a trade-off between sooner (spring) and later (autumn) cercariae emergence/infestation on one hand, and a longer inhibition period of cercariae emergence/infestation during the hottest days in summer. Using sea water temperature in Oualidia (Morocco) where mean annual sea temperature is 3 °C higher than in Arcachon Bay, our model predicted infestation all year long (no seasonality). The model gave a correct estimation of the total number of parasites that was expected in cockles. Conversely, observed infestation in Oualidia followed a seasonal pattern like in Arcachon Bay. These results suggest that, if temperature is a strong driver of parasite transmission, extrapolation in the framework of climate change should be performed with caution.Read less <