Afficher la notice abrégée

hal.structure.identifierSamsung Corning Precision Glass
dc.contributor.authorKWON, C. W.
hal.structure.identifierSamsung Advanced Institute of Technology [SAIT]
dc.contributor.authorKIM, H.
hal.structure.identifierLaboratoire de chimie organique et organométallique [LCOO]
dc.contributor.authorTOUPANCE, Thierry
hal.structure.identifierLaboratoire de chimie organique et organométallique [LCOO]
dc.contributor.authorJOUSSEAUME, Bernard
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorCAMPET, Guy
dc.contributor.editorTsuyoshi Nakajima
dc.contributor.editorHenri Groult
dc.date.issued2005
dc.identifier.isbn0-08-044472-5
dc.description.abstractEnLithium batteries are considered to be the best alternative for a portable power source because they provide high output power and have moderate lifetime. However, their capacity is limited by the electrode materials they contain. Hence, much effort has been made to improve the performance of the electrode materials. The control of crystallite size is a key factor in determining the specific capacity and the cycling efficiency of electrodes. The studies on alloy-based anode materials have also shown the effects of crystallite size on the dimensional stability and capacity retention of the electrode. To overcome some disadvantages of alloy-based anode materials, nanocrystalline materials have been intensively investigated. This chapter begins with a brief history of tin oxide as an anode electrode for lithium batteries. It discusses the doping approach for improving tin oxide, especially fluorine doping. Finally, the surface effects of electrode materials based on the nanocrystalline materials and on the “electrochemical grafting model” are elucidated. The material presented in the chapter concludes that the electrochemistry of nanocrystalline materials differs from that of traditional well-crystalline ones because of their significant surface effects, and the electrochemical properties of the doped-SnO2 show improved performance mainly due to increased conductivity.
dc.language.isoen
dc.publisherElsevier
dc.publisher.locationAmsterdam
dc.source.titleFluorinated Materials for Energy Conversion
dc.title.enFluorine-doped tin oxide electrods for lithium batteries
dc.typeChapitre d'ouvrage
dc.identifier.doi10.1016/B978-008044472-7/50033-3
dc.subject.halChimie/Matériaux
bordeaux.page103-123
bordeaux.title.proceedingFluorinated Materials for Energy Conversion
hal.identifierhal-04155564
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04155564v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Fluorinated%20Materials%20for%20Energy%20Conversion&rft.date=2005&rft.spage=103-123&rft.epage=103-123&rft.au=KWON,%20C.%20W.&KIM,%20H.&TOUPANCE,%20Thierry&JOUSSEAUME,%20Bernard&CAMPET,%20Guy&rft.isbn=0-08-044472-5&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée