From Capture to Simulation - Connecting Forward and Inverse Problems in Fluids
IHRKE, Ivo
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Melting the frontiers between Light, Shape and Matter [MANAO]
Voir plus >
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Melting the frontiers between Light, Shape and Matter [MANAO]
IHRKE, Ivo
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Melting the frontiers between Light, Shape and Matter [MANAO]
< Réduire
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Melting the frontiers between Light, Shape and Matter [MANAO]
Langue
en
Article de revue
Ce document a été publié dans
ACM Transactions on Graphics. 2014-08-10, vol. 33, p. 11
Association for Computing Machinery
Résumé en anglais
We explore the connection between fluid capture, simulation and proximal methods, a class of algorithms commonly used for inverse problems in image processing and computer vision. Our key finding is that the proximal ...Lire la suite >
We explore the connection between fluid capture, simulation and proximal methods, a class of algorithms commonly used for inverse problems in image processing and computer vision. Our key finding is that the proximal operator constraining fluid velocities to be divergence-free is directly equivalent to the pressure-projection methods commonly used in incompressible flow solvers. This observation lets us treat the inverse problem of fluid tracking as a constrained flow problem all while working in an efficient, modular framework. In addition it lets us tightly couple fluid simulation into flow tracking, providing a global prior that significantly increases tracking accuracy and temporal coherence as compared to previous techniques. We demonstrate how we can use these improved results for a variety of applications, such as re-simulation, detail enhancement, and domain modification. We furthermore give an outlook of the applications beyond fluid tracking that our proximal operator framework could enable by exploring the connection of deblurring and fluid guiding.< Réduire
Origine
Importé de halUnités de recherche