Accéléromètre atomique double espèce 87Rb/39K aéroporté pour un test du principe d’équivalence
Idioma
fr
Thèses de doctorat
Escuela doctoral
École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde)Resumen
Lors de ces vingt dernières années, de nouvelles techniques de refroidissement et de manipulation des atomes ont permis le développement de senseurs inertiels basés sur l’interférométrie atomique. Le projet ICE est un ...Leer más >
Lors de ces vingt dernières années, de nouvelles techniques de refroidissement et de manipulation des atomes ont permis le développement de senseurs inertiels basés sur l’interférométrie atomique. Le projet ICE est un interféromètre atomique double espèce qui a pour objectif de tester le principe d’équivalence faible. Afin d’augmenter la sensibilité de l’instrument, l’expérience est réalisée en micro-gravité lors de vols paraboliques à borde l’Airbus A300 zero-g de Novespace. L’interféromètre est composé de deux espèces atomiques (87Rb et 39K) ayant des transitions atomiques très proches (780 et 767nm). Ces longueurs d’ondes sont générées par une source laser bi-fréquence ultra-stable. Issue des technologies telecom et ensuite doublées en fréquence, elle est capable de résister aux contraintes des vols paraboliques. Précédemment, des mesures d’accélérations furent réalisées par un interféromètre Rubidiumen 1g et 0g en vol. Récemment, à l’aide d’un nouveau dispositif expérimental reposant sur une nouvelle enceinte à vide en titane, nous avons réalisé un des premiers accéléromètres Potassium. Cet atome présente en effet certaines difficultés à refroidir et à manipuler et demande un excellent contrôle des différents paramètres expérimentaux.Je présente ainsi dans ce manuscrit, les résultats obtenus avec le Rubidium et le Potassium sur le nouveau dispositif expérimental, et les récents progrès réalisés en vue d’un accéléromètre double espèce Rb/K.< Leer menos
Resumen en inglés
During the last two decades, new techniques to cool and manipulate atoms has enabled the development of inertial sensors based on atom interferometry. The ICE project aims to verify the weak equivalence principle (WEP) ...Leer más >
During the last two decades, new techniques to cool and manipulate atoms has enabled the development of inertial sensors based on atom interferometry. The ICE project aims to verify the weak equivalence principle (WEP) using a compact and transportable dual-species atom interferometer. To make precise tests of the WEP, this experiment is performed in a micro-gravity environment during parabolic flights onboard the Novespace zero-g aircraft. The interferometer is composed of two atomic species (87Rb et 39K) with similar transition wavelengths (780 nm and 767 nm), which are derived from frequency-doubled telecom lasers. This ultra-stable laser source is able to withst and the parabolic flight and their rough conditions.In previous work, we have demonstrated measurements from a cold rubidium interferometer during the 1g and 0g phases during flights. Recently, we manage to carry out one of the first gravimeter with 39K in a new titanium vacuum system. This is a huge achievement because this atom is hard to cool down and to manipulate. I will present in this thesis, the results with Rubidium and Potassium on the newset-up, I we will report on recent progress toward a double species 87Rb/39K interferometer.< Leer menos
Palabras clave
Interférométrie atomique
Source laser ultra stable
Potassium
Interféromètre double espèce
Microgravité
Principe d'équivalence
Senseur inertiel
Atomes froids
Palabras clave en inglés
Atom interferometry
Ultra stable laser source
Double Species interferometer
Microgravity
Equivalence principle
Inertial sensor
Cold atoms
Orígen
Importado de HalCentros de investigación