Afficher la notice abrégée

hal.structure.identifierPhysico-Chimie-Curie [PCC]
dc.contributor.authorALESSANDRI, Kévin
hal.structure.identifierPhysico-Chimie-Curie [PCC]
dc.contributor.authorSINHA, Bibdu Ranjan
hal.structure.identifierPhysico-Chimie-Curie [PCC]
hal.structure.identifierCompartimentation et dynamique cellulaires [CDC]
dc.contributor.authorGURCHENKOV, Vasily Valérïevitsch
hal.structure.identifierIndian Institute of Science Education and Research Kolbata [IISER Kolkata]
dc.contributor.authorSINHA, Bidisha
hal.structure.identifierSoft Matter Physics Division [Leipzig, Allemagne]
dc.contributor.authorKIESSLING, Tobias Reinhold
hal.structure.identifierPhysico-Chimie-Curie [PCC]
dc.contributor.authorFETLER, Luc
hal.structure.identifierBIO-AFM-LAB Bio Atomic Force Microscopy Laboratory [Bio-AFM-Lab]
dc.contributor.authorRICO, Felix
hal.structure.identifierBIO-AFM-LAB Bio Atomic Force Microscopy Laboratory [Bio-AFM-Lab]
dc.contributor.authorSCHEURING, Simon
hal.structure.identifierPhysico-Chimie-Curie [PCC]
hal.structure.identifierCompartimentation et dynamique cellulaires [CDC]
dc.contributor.authorLAMAZE, Christophe
hal.structure.identifierPhysico-Chimie-Curie [PCC]
hal.structure.identifierCompartimentation et dynamique cellulaires [CDC]
dc.contributor.authorSIMON, Anthony
hal.structure.identifierPhysico-Chimie-Curie [PCC]
hal.structure.identifierCompartimentation et dynamique cellulaires [CDC]
dc.contributor.authorGERALDO, Sara
hal.structure.identifierPhysico-Chimie-Curie [PCC]
hal.structure.identifierCompartimentation et dynamique cellulaires [CDC]
dc.contributor.authorVIGNJEVICÁ, Danijela
hal.structure.identifierLaboratoire Colloïdes et Matériaux Divisés [LCMD]
dc.contributor.authorDOMÉJEAN, Hugo
hal.structure.identifierLaboratoire Colloïdes et Matériaux Divisés [LCMD]
dc.contributor.authorROLLAND, Leslie
hal.structure.identifierLaboratoire Colloïdes et Matériaux Divisés [LCMD]
dc.contributor.authorFUNFAK, Anette
hal.structure.identifierLaboratoire Colloïdes et Matériaux Divisés [LCMD]
dc.contributor.authorBIBETTE, Jérôme
hal.structure.identifierLaboratoire Colloïdes et Matériaux Divisés [LCMD]
dc.contributor.authorBREMOND, Nicolas
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
hal.structure.identifierPhysico-Chimie-Curie [PCC]
dc.contributor.authorNASSOY, Pierre
dc.date.accessioned2023-05-12T10:56:03Z
dc.date.available2023-05-12T10:56:03Z
dc.date.issued2013
dc.identifier.issn0027-8424
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181943
dc.description.abstractEnDeciphering the multifactorial determinants of tumor progression requires standardized high-throughput preparation of 3D in vitro cellular assays. We present a simple microfluidic method based on the encapsulation and growth of cells inside permeable, elastic, hollow microspheres. We show that this approach enables mass production of size-controlled multicellular spheroids. Due to their geometry and elasticity, these microcapsules can uniquely serve as quantitative mechanical sensors to measure the pressure exerted by the expanding spheroid. By monitoring the growth of individual encapsulated spheroids after confluence, we dissect the dynamics of pressure buildup toward a steady-state value, consistent with the concept of homeostatic pressure. In turn, these confining conditions are observed to increase the cellular density and affect the cellular organization of the spheroid. Postconfluent spheroids exhibit a necrotic core cemented by a blend of extracellular material and surrounded by a rim of proliferating hypermotile cells. By performing invasion assays in a collagen matrix, we report that peripheral cells readily escape preconfined spheroids and cell–cell cohesivity is maintained for freely growing spheroids, suggesting that mechanical cues from the surrounding microenvironment may trigger cell invasion from a growing tumor. Overall, our technology offers a unique avenue to produce in vitro cell-based assays useful for developing new anticancer therapies and to investigate the interplay between mechanics and growth in tumor evolution. tissue mechanics | microfluidics | tumor growth | mechanotransduction
dc.language.isoen
dc.publisherNational Academy of Sciences
dc.subject.enCANCER-CELLS
dc.subject.enGROWTH
dc.subject.enENVIRONMENT
dc.subject.entissue mechanics
dc.subject.enmicrofluidics
dc.subject.entumor growth
dc.subject.enmechanotransduction
dc.subject.enALGINATE GEL BEADS
dc.subject.enSIZE
dc.subject.enMODEL
dc.title.enCellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro
dc.typeArticle de revue
dc.identifier.doi10.1073/pnas.1309482110
dc.subject.halSciences du Vivant [q-bio]/Biochimie, Biologie Moléculaire
dc.subject.halPhysique [physics]/Physique [physics]/Biophysique [physics.bio-ph]
bordeaux.journalProceedings of the National Academy of Sciences of the United States of America
bordeaux.page14843-8
bordeaux.volume110
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.issue37
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierinserm-01356886
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//inserm-01356886v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20of%20the%20United%20States%20of%20America&rft.date=2013&rft.volume=110&rft.issue=37&rft.spage=14843-8&rft.epage=14843-8&rft.eissn=0027-8424&rft.issn=0027-8424&rft.au=ALESSANDRI,%20K%C3%A9vin&SINHA,%20Bibdu%20Ranjan&GURCHENKOV,%20Vasily%20Val%C3%A9r%C3%AFevitsch&SINHA,%20Bidisha&KIESSLING,%20Tobias%20Reinhold&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée