Afficher la notice abrégée

hal.structure.identifierLos Alamos National Laboratory [LANL]
dc.contributor.authorBLANCON, Jean-Christophe
hal.structure.identifierLos Alamos National Laboratory [LANL]
dc.contributor.authorNIE, Wanyie
hal.structure.identifierLos Alamos National Laboratory [LANL]
dc.contributor.authorNEUKIRCH, Amanda J.
hal.structure.identifierLos Alamos National Laboratory [LANL]
dc.contributor.authorGUPTA, Gautam
hal.structure.identifierLos Alamos National Laboratory [LANL]
dc.contributor.authorTRETIAK, Sergei
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorCOGNET, Laurent
hal.structure.identifierLos Alamos National Laboratory [LANL]
dc.contributor.authorMOHITE, Aditya D.
hal.structure.identifierLos Alamos National Laboratory [LANL]
dc.contributor.authorCROCHET, Jared J.
dc.date.accessioned2023-05-12T10:54:16Z
dc.date.available2023-05-12T10:54:16Z
dc.date.issued2016-04-27
dc.identifier.issn1616-301X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181911
dc.description.abstractEnOrganometallic perovskites have attracted considerable attention after promising developments in energy harvesting and other optoelectronic applications. However, further optimization will require a deeper understanding of the intrinsic photo-physics of materials with relevant structural characteristics. Here we investigate the dynamics of photogenerated charge carriers in large-area grain organometallic perovskite thin films via confocal time-resolved photoluminescence spectroscopy. It is found that the bimolecular recombination of free charges is the dominant decay mechanism at excitation densities relevant for photovoltaic applications. Bimolecular coefficients are found to be on the order of 10-9 cm3/s, comparable to typical direct-gap semiconductors, yet significantly smaller than theoretically expected. We also demonstrate that there is no degradation in carrier transport in these thin films due to electronic impurities. Suppressed electron-hole recombination and transport that is not limited by deep level defects provide a microscopic model for the superior performance of large-area grain hybrid perovskites for photovoltaic applications.
dc.language.isoen
dc.publisherWiley
dc.title.enThe effects of electronic impurities and electron-hole recombination dynamics on large-grain organic-inorganic perovskite photovoltaic efficiencies
dc.typeArticle de revue
dc.identifier.doi10.1002/adfm.201505324
dc.subject.halPhysique [physics]/Physique [physics]/Biophysique [physics.bio-ph]
bordeaux.journalAdvanced Functional Materials
bordeaux.page4283
bordeaux.volume26
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.issue24
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01390068
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01390068v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Advanced%20Functional%20Materials&rft.date=2016-04-27&rft.volume=26&rft.issue=24&rft.spage=4283&rft.epage=4283&rft.eissn=1616-301X&rft.issn=1616-301X&rft.au=BLANCON,%20Jean-Christophe&NIE,%20Wanyie&NEUKIRCH,%20Amanda%20J.&GUPTA,%20Gautam&TRETIAK,%20Sergei&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée