Afficher la notice abrégée

hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorYANG, Jianji
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorFAGGIANI, Rémi
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorLALANNE, Philippe
dc.date.accessioned2023-05-12T10:54:12Z
dc.date.available2023-05-12T10:54:12Z
dc.date.issued2016
dc.identifier.issn2055-6756
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181902
dc.description.abstractEnVery large spontaneous-emission-rate enhancements (B1000) are obtained for quantum emitters coupled with tiny plasmonic resonance, especially when emitters are placed in the mouth of nanogaps formed by metal nanoparticles that are nearly in contact. This fundamental effect of light emission at subwavelength scales is well documented and understood as resulting from the smallness of nanogap modes. In contrasts, it is much less obvious to figure out whether the radiation efficiency is high in these gaps, or if the emission is quenched by metal absorption especially for tiny gaps a few nanometers wide; the whole literature only contains scattered electromagnetic calculations on the subject, which suggest that absorption and quenching can be kept at a small level despite the emitter proximity to metal. Thus through analytical derivations in the limit of small gap thickness, it is our objective to clarify why quantum emitters in nanogap antennas offer good efficiencies, what are the circumstances in which high efficiency is obtained, and whether there exists an upper bound for the maximum efficiency achievable.
dc.language.isoen
dc.publisherRoyal Society of Chemistry
dc.title.enLight emission in nanogaps: overcoming quenching
dc.typeArticle de revue
dc.identifier.doi10.1039/c5nh00059a
dc.subject.halPhysique [physics]/Physique [physics]/Optique [physics.optics]
bordeaux.journalNanoscale Horizons
bordeaux.page11-13
bordeaux.volume1
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01397064
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01397064v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nanoscale%20Horizons&rft.date=2016&rft.volume=1&rft.issue=1&rft.spage=11-13&rft.epage=11-13&rft.eissn=2055-6756&rft.issn=2055-6756&rft.au=YANG,%20Jianji&FAGGIANI,%20R%C3%A9mi&LALANNE,%20Philippe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée