Cell stretching is amplified by active actin remodelling to deform and recruit proteins in mechanosensitive structures
MASSOU, Sophie
Interdisciplinary Institute for Neuroscience / Institut interdisciplinaire de neurosciences [Bordeaux] [IINS]
Interdisciplinary Institute for Neuroscience / Institut interdisciplinaire de neurosciences [Bordeaux] [IINS]
NUNES VICENTE, Filipe
Interdisciplinary Institute for Neuroscience / Institut interdisciplinaire de neurosciences [Bordeaux] [IINS]
Leer más >
Interdisciplinary Institute for Neuroscience / Institut interdisciplinaire de neurosciences [Bordeaux] [IINS]
MASSOU, Sophie
Interdisciplinary Institute for Neuroscience / Institut interdisciplinaire de neurosciences [Bordeaux] [IINS]
Interdisciplinary Institute for Neuroscience / Institut interdisciplinaire de neurosciences [Bordeaux] [IINS]
NUNES VICENTE, Filipe
Interdisciplinary Institute for Neuroscience / Institut interdisciplinaire de neurosciences [Bordeaux] [IINS]
Interdisciplinary Institute for Neuroscience / Institut interdisciplinaire de neurosciences [Bordeaux] [IINS]
MEHIDI, Amine
Interdisciplinary Institute for Neuroscience / Institut interdisciplinaire de neurosciences [Bordeaux] [IINS]
Interdisciplinary Institute for Neuroscience / Institut interdisciplinaire de neurosciences [Bordeaux] [IINS]
ROSSIER, Olivier
Interdisciplinary Institute for Neuroscience / Institut interdisciplinaire de neurosciences [Bordeaux] [IINS]
Interdisciplinary Institute for Neuroscience / Institut interdisciplinaire de neurosciences [Bordeaux] [IINS]
GIANNONE, Grégory
Interdisciplinary Institute for Neuroscience / Institut interdisciplinaire de neurosciences [Bordeaux] [IINS]
< Leer menos
Interdisciplinary Institute for Neuroscience / Institut interdisciplinaire de neurosciences [Bordeaux] [IINS]
Idioma
en
Article de revue
Este ítem está publicado en
Nature Cell Biology. 2020-08, vol. 22, n° 8, p. 1011-1023
Nature Publishing Group
Resumen en inglés
Detection and conversion of mechanical forces into biochemical signals control cell functions during physiological and pathological processes. Mechano-sensing is based on protein deformations and reorganizations, yet the ...Leer más >
Detection and conversion of mechanical forces into biochemical signals control cell functions during physiological and pathological processes. Mechano-sensing is based on protein deformations and reorganizations, yet the molecular mechanisms in cells are still unclear. Using a cell stretching device compatible with super-resolution microscopy (SRM) and single protein tracking (SPT), we explored the nanoscale deformations and reorganizations of individual proteins inside mechano-sensitive structures. We achieved SRM after live stretching on intermediate filaments, microtubules and integrin adhesions. Simultaneous SPT and stretching showed that while integrins follow the elastic deformation of the substrate, actin filaments and talin also displayed lagged and transient inelastic responses associated with active acto-myosin remodeling and talin deformations. Capturing acute reorganizations of single-molecule during stretching showed that force-dependent vinculin recruitment is delayed and depends on the maturation state of integrin adhesions. Thus, cells respond to external forces by amplifying transiently and locally cytoskeleton displacements enabling protein deformation and recruitment in mechano-sensitive structures.< Leer menos
Orígen
Importado de HalCentros de investigación