Show simple item record

hal.structure.identifierHarvard University
dc.contributor.authorRUIZ-HERRERO, Teresa
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorALESSANDRI, Kévin
hal.structure.identifierInstitut de Génétique et de Biologie Moléculaire et Cellulaire [IGBMC]
dc.contributor.authorGURCHENKOV, Basile
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorNASSOY, Pierre
hal.structure.identifierHarvard University
dc.contributor.authorMAHADEVAN, L.
dc.date.accessioned2023-05-12T10:32:39Z
dc.date.available2023-05-12T10:32:39Z
dc.date.issued2017-12-01
dc.identifier.issn0950-1991
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181442
dc.description.abstractEnHollow vesicular tissues of various sizes and shapes arise in biological organs such as ears, guts, hearts, brains and even entire organisms. Regulating their size and shape is crucial for their function. Although chemical signaling has been thought to play a role in the regulation of cellular processes that feed into larger scales, it is increasingly recognized that mechanical forces are involved in the modulation of size and shape at larger length scales. Motivated by a variety of examples of tissue cyst formation and size control that show simultaneous growth and size oscillations, we create a minimal theoretical framework for the growth and dynamics of a soft, fluid-permeable, spherical shell. We show that these shells can relieve internal pressure by bursting intermittently, shrinking and re-growing, providing a simple mechanism by which hydraulically gated oscillations can regulate size. To test our theory, we develop an in vitro experimental set-up to monitor the growth and oscillations of a hollow tissue spheroid growing freely or when confined. A simple generalization of our theory to account for irreversible deformations allows us to explain the time scales and the amplitudes of oscillations in terms of the geometry and mechanical properties of the tissue shells. Taken together, our theory and experimental observations show how soft hydraulics can regulate the size of growing tissue shells.
dc.language.isoen
dc.publisherCompany of Biologists
dc.subject.enHydraulic gating
dc.subject.enMorphogenesis
dc.subject.enOrgan size control
dc.subject.enSynthetic cysts
dc.title.enOrgan size control via hydraulically gated oscillations
dc.typeArticle de revue
dc.identifier.doi10.1242/dev.153056
dc.subject.halSciences du Vivant [q-bio]/Biologie du développement
bordeaux.journalDevelopment (Cambridge, England)
bordeaux.page4422-4427
bordeaux.volume144
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.issue23
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03678326
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03678326v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Development%20(Cambridge,%20England)&rft.date=2017-12-01&rft.volume=144&rft.issue=23&rft.spage=4422-4427&rft.epage=4422-4427&rft.eissn=0950-1991&rft.issn=0950-1991&rft.au=RUIZ-HERRERO,%20Teresa&ALESSANDRI,%20K%C3%A9vin&GURCHENKOV,%20Basile&NASSOY,%20Pierre&MAHADEVAN,%20L.&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record