Self-discharge mechanism of high-voltage KVPO4F for K-ion batteries
WERNERT, Romain
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
NGUYEN, Long H.B.
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Leer más >
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
WERNERT, Romain
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
NGUYEN, Long H.B.
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
WEILL, François
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
MONCONDUIT, Laure
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
CARLIER, Dany
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
CROGUENNEC, Laurence
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
< Leer menos
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Idioma
en
Article de revue
Este ítem está publicado en
ACS Applied Energy Materials. 2022, vol. 5, n° 12, p. 14913–14921
ACS
Resumen en inglés
Current performances of Li-, Na-, or K-ion batteries are mainly limited by the specific capacity of the positive electrode. Therefore, it is important to reach the highest capacity possible for a given electrode material. ...Leer más >
Current performances of Li-, Na-, or K-ion batteries are mainly limited by the specific capacity of the positive electrode. Therefore, it is important to reach the highest capacity possible for a given electrode material. Here, we investigate the performance limitation of KVPO4F, a prospective material for K-ion batteries, which can deliver only 80% of its theoretical capacity. We discover that the capacity limitation of KVPO4F is related to a kinetic competition between K+ deinsertion and side reactions ascribed to the electrolyte degradation at high potentials. Homeotypic VPO4F can be obtained from KVPO4F through a chemical deintercalation process, which disproves a possible structural limitation or instability. The deintercalated compound was characterized by electron and X-ray diffraction, X-ray absorption spectroscopy, and nuclear magnetic resonance spectroscopy. Despite the structural stability, a spontaneous reaction occurs between the deintercalated KxVPO4F (x < 0.5) and the electrolyte (0.8 M KPF6 in ethylene carbonate/diethylene carbonate), with an electron transfer to vanadium compensated by K+ intercalation. This reaction leads to self-discharge until the open circuit potential is lower than 4.7 V versus K+/K, corresponding to the K0.5VPO4F composition.< Leer menos
Palabras clave en inglés
Vanadium phosphate fluoride
Potassium-ion battery
Chemical deintercalation
Self-discharge mechanism
Side reactions
Proyecto ANR
Vers des batteries innovantes K-ion - ANR-19-CE05-0026
Laboratory of excellency for electrochemical energy storage - ANR-10-LABX-0076
Laboratory of excellency for electrochemical energy storage - ANR-10-LABX-0076
Orígen
Importado de HalCentros de investigación