Sin título
KALINICHEVA, Ekaterina
Biodiversité, Gènes & Communautés [BioGeCo]
Ecole Nationale Supérieure de Géologie [ENSG]
IGN-France International [IGN FI]
Leer más >
Biodiversité, Gènes & Communautés [BioGeCo]
Ecole Nationale Supérieure de Géologie [ENSG]
IGN-France International [IGN FI]
KALINICHEVA, Ekaterina
Biodiversité, Gènes & Communautés [BioGeCo]
Ecole Nationale Supérieure de Géologie [ENSG]
IGN-France International [IGN FI]
Biodiversité, Gènes & Communautés [BioGeCo]
Ecole Nationale Supérieure de Géologie [ENSG]
IGN-France International [IGN FI]
CHEHATA, Nesrine
Institut Polytechnique de Bordeaux [Bordeaux INP]
Ecole Nationale Supérieure de Géologie [ENSG]
IGN-France International [IGN FI]
< Leer menos
Institut Polytechnique de Bordeaux [Bordeaux INP]
Ecole Nationale Supérieure de Géologie [ENSG]
IGN-France International [IGN FI]
Idioma
en
Communication dans un congrès
Este ítem está publicado en
2022-06-19, New Orleans. p. 1341-1350
IEEE
Resumen en inglés
The analysis of the multi-layer structure of wild forests is an important challenge of automated large-scale forestry. While modern aerial LiDARs offer geometric information across all vegetation layers, most datasets and ...Leer más >
The analysis of the multi-layer structure of wild forests is an important challenge of automated large-scale forestry. While modern aerial LiDARs offer geometric information across all vegetation layers, most datasets and methods focus only on the segmentation and reconstruction of the top of canopy. We release WildForest3D, which consists of 29 study plots and over 2000 individual trees across 47 000m 2 with dense 3D annotation, along with occupancy and height maps for 3 vegetation layers: ground vegetation, understory, and overstory. We propose a 3D deep network architecture predicting for the first time both 3D point-wise labels and high-resolution layer occupancy rasters simultaneously. This allows us to produce a precise estimation of the thickness of each vegetation layer as well as the corresponding watertight meshes, therefore meeting most forestry purposes. Both the dataset and the model are released in open access: https://github.com/ekalinicheva/multi_layer_vegetation.< Leer menos
Palabras clave en inglés
Computer vision
Solid modeling
Three-dimensional displays
Laser radar
Annotations
Atmospheric modeling
Time series analysis
Orígen
Importado de HalCentros de investigación