Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Neurosciences cognitives et intégratives d'Aquitaine [INCIA]
dc.contributor.authorVON UCKERMANN, Geraldine
hal.structure.identifierInstitut de Neurosciences cognitives et intégratives d'Aquitaine [INCIA]
dc.contributor.authorLE RAY, Didier
ORCID: 0000-0003-2089-9861
IDREF: 141904275
hal.structure.identifierInstitut de Neurosciences cognitives et intégratives d'Aquitaine [INCIA]
dc.contributor.authorCOMBES, Denis
ORCID: 0000-0003-3732-7261
dc.contributor.authorSTRAKA, Hans
hal.structure.identifierInstitut de Neurosciences cognitives et intégratives d'Aquitaine [INCIA]
dc.contributor.authorSIMMERS, John
ORCID: 0000-0002-7487-4638
IDREF: 244015430
dc.date.accessioned2023-05-02T10:15:00Z
dc.date.available2023-05-02T10:15:00Z
dc.date.issued2013-03-06
dc.identifier.issn1529-2401en_US
dc.identifier.urihttps://www.researchgate.net/publication/235881448_Spinal_Efference_Copy_Signaling_and_Gaze_Stabilization_during_Locomotion_in_Juvenile_Xenopus_Frogs
dc.identifier.urioai:researchgate.net:235881448
dc.identifier.urioai:crossref.org:10.1523/jneurosci.4521-12.2013
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/173232
dc.description.abstractEnIn swimming Xenopus laevis tadpoles, gaze stabilization is achieved by efference copies of spinal locomotory CPG output that produce rhythmic extraocular motor activity appropriate for minimizing motion-derived visual disturbances. During metamorphosis, Xenopus switches its locomotory mechanism from larval tail-based undulatory movements to bilaterally synchronous hindlimb kick propulsion in the adult. The change in locomotory mode leads to body motion dynamics that no longer require conjugate left-right eye rotations for effective retinal image stabilization. Using in vivo kinematic analyses, in vitro electrophysiological recordings and specific CNS lesions, we have investigated spino-extraocular motor coupling in the juvenile frog and the underlying neural pathways to understand how gaze control processes are altered in accordance with the animal's change in body plan and locomotor strategy. Recordings of extraocular and limb motor nerves during spontaneous "fictive" swimming in isolated CNS preparations revealed that there is indeed a corresponding change in spinal efference copy control of extraocular motor output. In contrast to fictive larval swimming where alternating bursts occur in bilateral antagonistic horizontal extraocular nerves, during adult fictive limb-kicking, these motor nerves are synchronously active in accordance with the production of convergent eye movements during the linear head accelerations resulting from forward propulsion. Correspondingly, the neural pathways mediating spino-extraocular coupling have switched from contralateral to strictly ipsilateral ascending influences that ensure a coactivation of bilateral extraocular motoneurons with synchronous left-right limb extensions. Thus, adaptive developmental plasticity during metamorphosis enables spinal CPG-driven extraocular motor activity to match the changing requirements for eye movement control during self-motion.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourceresearchgate
dc.sourcecrossref
dc.subject.enAction Potentials
dc.subject.enAnimals
dc.subject.enAnura
dc.subject.enBiomechanical Phenomena
dc.subject.enBrain Stem
dc.subject.enExtremities
dc.subject.enFemale
dc.subject.enFixation
dc.subject.enOcular
dc.subject.enFunctional Laterality
dc.subject.enIn Vitro Techniques
dc.subject.enMale
dc.subject.enMetamorphosis
dc.subject.enBiological
dc.subject.enNerve Net
dc.subject.enNeural Pathways
dc.subject.enOptic Nerve Injuries
dc.subject.enSpinal Cord
dc.subject.enSpinal Cord Injuries
dc.subject.enStatistics, Nonparametric
dc.subject.enSwimming
dc.subject.enVideo Recording
dc.subject.enXenopus laevis
dc.title.enSpinal Efference Copy Signaling and Gaze Stabilization during Locomotion in Juvenile Xenopus Frogs
dc.typeArticle de revueen_US
dc.identifier.doi10.1523/jneurosci.4521-12.2013en_US
dc.subject.halSciences du Vivant [q-bio]/Neurosciences [q-bio.NC]en_US
dc.identifier.pubmed23467343en_US
bordeaux.journalJournal of Neuroscienceen_US
bordeaux.page4253-4264en_US
bordeaux.volume33en_US
bordeaux.hal.laboratoriesInstitut de neurosciences cognitives et intégratives d'Aquitaine (INCIA) - UMR 5287en_US
bordeaux.issue10en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.teamMotoPSYNen_US
bordeaux.teamDN3en_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.exportfalse
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Neuroscience&rft.date=2013-03-06&rft.volume=33&rft.issue=10&rft.spage=4253-4264&rft.epage=4253-4264&rft.eissn=1529-2401&rft.issn=1529-2401&rft.au=VON%20UCKERMANN,%20Geraldine&LE%20RAY,%20Didier&COMBES,%20Denis&STRAKA,%20Hans&SIMMERS,%20John&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée