Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorJIANG, Huan
dc.contributor.authorZIEGLER, Hannah
dc.contributor.authorZHANG, Zhennan
dc.contributor.authorZHANG, Heng
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorLE BARBENCHON, Louise
dc.contributor.authorATRE, Sundar
dc.contributor.authorCHEN, Yanyu
dc.date.accessioned2023-02-24T12:47:47Z
dc.date.available2023-02-24T12:47:47Z
dc.date.issued2022-05-01
dc.identifier.issn1359-8368en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/172084
dc.description.abstractEnCoronary artery disease (CAD) is the narrowing or blockage of the coronary arteries, usually caused by atherosclerosis. An interventional procedure using stents is a promising approach for treating CAD because stents can effectively open narrowed coronary arteries to improve blood flow to the heart. However, stents often suffer from catastrophic failures, such as fractures and migration of ligaments, resulting in fatal clinical events. In this work, we report a new type of tubular lattice metamaterial with enhanced mechanical resilience under radial compression, which can be used as an alternative for the current stent design. We begin by comparing the radial mechanical performance of the proposed auxetic tubular lattice (ATL) with the conventional diamond tubular lattice (DTL). Our results show that the ductility of ATL increases by 72.7% compared with that of the DTL structure. The finite element simulations reveal that the stress is more uniformly spread on the sinusoidal ligaments for ATL, while rather concentrated on the joints of straight ligaments for DTL. This phenomenon is intrinsically due to the bending of sinusoidal ligaments along both radial and axial directions, while straight beams bend mainly along the radial direction. We then investigated the effects of the geometrical parameters of the sinusoidal ligament on radial mechanical performance. Experimental results indicate that the beam depth h/l has the most significant effect on the stiffness and peak load. The stiffness and maximum load surge by 789% and 1131%, respectively, when h/l increases from 0.15 to 0.30. In contrast, the beam amplitude A/l has a minor effect on the stiffness and peak load compared to beam depth and beam thickness. However, increasing the amplitude of the sinusoidal ligament can enlarge the ductility strikingly. The ductility can increase by 67.5% if the amplitude is augmented from A/l=0.1 to A/l=0.35. The findings from this work can provide guidance for designing more mechanically robust stents for medical engineering.
dc.language.isoENen_US
dc.subject.en3D printing
dc.subject.enDuctility
dc.subject.enMetamaterials
dc.subject.enStents
dc.subject.enTubular structure
dc.title.en3D printed tubular lattice metamaterials for mechanically robust stents
dc.title.alternativeComposites Part B: Engineeringen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.compositesb.2022.109809en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalComposites Part Ben_US
bordeaux.volume236en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Composites%20Part%20B&rft.date=2022-05-01&rft.volume=236&rft.eissn=1359-8368&rft.issn=1359-8368&rft.au=JIANG,%20Huan&ZIEGLER,%20Hannah&ZHANG,%20Zhennan&ZHANG,%20Heng&LE%20BARBENCHON,%20Louise&rft.genre=article


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée