Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBELLEZZA, G.
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorCOUEGNAT, Guillaume
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorRICCHIUTO, Mario
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorVIGNOLES, Gerard
IDREF: 070191875
dc.date.accessioned2023-01-24T14:27:26Z
dc.date.available2023-01-24T14:27:26Z
dc.date.issued2022-11-01
dc.identifier.issn0955-2219en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/171765
dc.description.abstractEnWe propose a multi-physics numerical model for a self-healing ceramic matrix mini-composite under tensile load. Crack averaged PDEs are proposed for the transport of oxygen and of all the chemical species involved in the healing process and studied in the dimensionless form to perform the most appropriate discretization choices concerning time integration, and boundary conditions. Concerning the fibres’ degradation, a slow crack growth model explicitly dependent on the environmental parameters is calibrated using a particular exact solution and integrated numerically in the general case. The tow failure results from the statistical distribution of the fibres’ initial strength, the slow crack growth kinetics, and the load transfer following fibres breakage. The lifetime prediction capabilities of the model, as well as the effect of temperature, spatial variation of the statistical distribution of fibres strength, and applied load, are investigated highlighting the influence of the diffusion/reaction processes (healing) on the fibre breakage scenarios.
dc.description.sponsorshipComposites Auto-Cicatrisants Virtuels pour la Propulsion Aéronautique - ANR-17-CE08-0030en_US
dc.language.isoENen_US
dc.subject.enCeramic-matrix composites
dc.subject.enImage-based modelling
dc.subject.enSelf-healing
dc.subject.enSlow crack growth
dc.title.enA 2D image-based multiphysics model for lifetime evaluation and failure scenario analysis of self-healing ceramic-matrix mini-composites under a tensile load
dc.title.alternativeJournal of the European Ceramic Societyen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.jeurceramsoc.2022.07.037en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalJournal of the European Ceramic Societyen_US
bordeaux.page6391-6403en_US
bordeaux.volume42en_US
bordeaux.hal.laboratoriesLaboratoire des Composites Thermo Structuraux (LCTS) - UMR 5801en_US
bordeaux.issue14en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionCEAen_US
bordeaux.institutionBordeaux INP
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20the%20European%20Ceramic%20Society&rft.date=2022-11-01&rft.volume=42&rft.issue=14&rft.spage=6391-6403&rft.epage=6391-6403&rft.eissn=0955-2219&rft.issn=0955-2219&rft.au=BELLEZZA,%20G.&COUEGNAT,%20Guillaume&RICCHIUTO,%20Mario&VIGNOLES,%20Gerard&rft.genre=article


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée