Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierBrigham and Women’s Hospital [Boston, MA]
dc.contributor.authorCOX, Laura
hal.structure.identifierBrigham and Women’s Hospital [Boston, MA]
dc.contributor.authorCALCAGNO, Narghes
hal.structure.identifierBrigham and Women’s Hospital [Boston, MA]
dc.contributor.authorGAUTHIER, Christian
hal.structure.identifierNutrition et Neurobiologie intégrée [NutriNeuro]
hal.structure.identifierBrigham and Women’s Hospital [Boston, MA]
dc.contributor.authorMADORE, Charlotte
hal.structure.identifierBrigham and Women’s Hospital [Boston, MA]
dc.contributor.authorBUTOVSKY, Oleg
hal.structure.identifierBrigham and Women’s Hospital [Boston, MA]
dc.contributor.authorWEINER, Howard
dc.date.accessioned2022-12-14T11:30:48Z
dc.date.available2022-12-14T11:30:48Z
dc.date.issued2022-04-11
dc.identifier.issn2049-2618en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/170633
dc.description.abstractEnBackground: The gut microbiota can affect neurologic disease by shaping microglia, the primary immune cell in the central nervous system (CNS). While antibiotics improve models of Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and the C9orf72 model of amyotrophic lateral sclerosis (ALS), antibiotics worsen disease progression the in SOD1G93A model of ALS. In ALS, microglia transition from a homeostatic to a neurodegenerative (MGnD) phenotype and contribute to disease pathogenesis, but whether this switch can be affected by the microbiota has not been investigated. Results: In this short report, we found that a low-dose antibiotic treatment worsened motor function and decreased survival in the SOD1 mice, which is consistent with studies using high-dose antibiotics. We also found that co-housing SOD1 mice with wildtype mice had no effect on disease progression. We investigated changes in the microbiome and found that antibiotics reduced Akkermansia and butyrate-producing bacteria, which may be beneficial in ALS, and cohousing had little effect on the microbiome. To investigate changes in CNS resident immune cells, we sorted spinal cord microglia and found that antibiotics downregulated homeostatic genes and increased neurodegenerative disease genes in SOD1 mice. Furthermore, antibiotic-induced changes in microglia preceded changes in motor function, suggesting that this may be contributing to disease progression. Conclusions: Our findings suggest that the microbiota play a protective role in the SOD1 model of ALS by restraining MGnD microglia, which is opposite to other neurologic disease models, and sheds new light on the importance of disease-specific interactions between microbiota and microglia. [MediaObject not available: see fulltext.] © 2022, The Author(s).
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.title.enThe microbiota restrains neurodegenerative microglia in a model of amyotrophic lateral sclerosis
dc.typeArticle de revueen_US
dc.identifier.doi10.1186/s40168-022-01232-zen_US
dc.subject.halSciences du Vivant [q-bio]/Neurosciences [q-bio.NC]en_US
dc.identifier.pubmed35272713en_US
bordeaux.journalMicrobiomeen_US
bordeaux.volume10en_US
bordeaux.hal.laboratoriesNutriNeurO (Laboratoire de Nutrition et Neurobiologie Intégrée) - UMR 1286en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINRAEen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.exportfalse
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Microbiome&rft.date=2022-04-11&rft.volume=10&rft.issue=1&rft.eissn=2049-2618&rft.issn=2049-2618&rft.au=COX,%20Laura&CALCAGNO,%20Narghes&GAUTHIER,%20Christian&MADORE,%20Charlotte&BUTOVSKY,%20Oleg&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée