Afficher la notice abrégée

hal.structure.identifierLaboratoire d'Electrochimie Moléculaire [LEM (UMR_7591)]
dc.contributor.authorTORBENSEN, Kristian
hal.structure.identifierLaboratoire d'Electrochimie Moléculaire [LEM (UMR_7591)]
dc.contributor.authorPATEL, Anisha
hal.structure.identifierLaboratoire d'Electrochimie Moléculaire [LEM (UMR_7591)]
dc.contributor.authorANNE, Agnès
hal.structure.identifierLaboratoire d'Electrochimie Moléculaire [LEM (UMR_7591)]
dc.contributor.authorDEMAILLE, Christophe
hal.structure.identifierBiologie du fruit et pathologie [BFP]
dc.contributor.authorBATAILLE, Laure
hal.structure.identifierBiologie du fruit et pathologie [BFP]
dc.contributor.authorMICHON, Thierry
hal.structure.identifierCentre de Recherche Paul Pascal [CRPP]
dc.contributor.authorGRELET, Eric
dc.date.issued2019-05-15
dc.identifier.issn2155-5435
dc.description.abstractEnA virus-based nanostructuring strategy is proposed for improving the catalytic performance of integrated redox enzyme electrodes. Random arrays of adsorbed filamentous fd bacteriophage particles, used as scaffolds, are assembled onto gold electrode surfaces. The viral particles are endowed with functionally coupled enzymatic and redox properties, by the sequential immunological assembly of quinoprotein glucose dehydrogenase conjugated antibodies and ferrocene PEGylated antibodies on their protein shell. The resulting virus-scaffolded enzyme/redox mediator integrated system displays a large enhancement in the catalytic current generated per enzyme molecule (i.e., in enzymatic turnover) as compared with nonscaffolded integrated glucose oxidizing enzyme electrodes. The mechanism underlying the observed scaffolding-induced catalytic enhancement is deciphered. Confinement of the mediator on the viral scaffold enables fast electron transport rate and shifts the enzyme behavior into its most effective cooperative kinetic mode.
dc.description.sponsorshipImagerie électrochimique fonctionnelle de systèmes enzymatiques multi-composants organisés sur des virus nano-gabarits - ANR-14-CE09-0009
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.enbioelectrocatalytic viral particles
dc.subject.enenzyme
dc.subject.enbioelectrocatalysis
dc.subject.enpyrroloquinoline quinone-dependent glucose dehydrogenase
dc.subject.ennanocarriers
dc.subject.enbioscaffolding
dc.title.enImmuno-Based Molecular Scaffolding of Glucose Dehydrogenase and Ferrocene Mediator on fd Viral Particles Yields Enhanced Bioelectrocatalysis ACS Paragon Plus Environment
dc.typeArticle de revue
dc.identifier.doi10.1021/acscatal.9b01263
dc.subject.halChimie
dc.subject.halChimie/Chimie analytique
dc.subject.halChimie/Catalyse
dc.subject.halChimie/Chimie théorique et/ou physique
bordeaux.journalACS Catalysis
bordeaux.page5783-5796
bordeaux.volume9
bordeaux.issue6
bordeaux.peerReviewedoui
hal.identifierhal-02186135
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02186135v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS%20Catalysis&rft.date=2019-05-15&rft.volume=9&rft.issue=6&rft.spage=5783-5796&rft.epage=5783-5796&rft.eissn=2155-5435&rft.issn=2155-5435&rft.au=TORBENSEN,%20Kristian&PATEL,%20Anisha&ANNE,%20Agn%C3%A8s&DEMAILLE,%20Christophe&BATAILLE,%20Laure&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée