Afficher la notice abrégée

hal.structure.identifierBiologie du fruit et pathologie [BFP]
dc.contributor.authorDECROS, Guillaume
hal.structure.identifierBiologie du fruit et pathologie [BFP]
dc.contributor.authorBEAUVOIT, Bertrand
hal.structure.identifierBiologie du fruit et pathologie [BFP]
dc.contributor.authorCOLOMBIE, Sophie
hal.structure.identifierBiologie du fruit et pathologie [BFP]
hal.structure.identifierMetaboHUB
dc.contributor.authorCABASSON, Cecile
hal.structure.identifierBiologie du fruit et pathologie [BFP]
hal.structure.identifierMetaboHUB
dc.contributor.authorBERNILLON, Stéphane
hal.structure.identifierMax Planck Institute of Molecular Plant Physiology [MPI-MP]
dc.contributor.authorARRIVAULT, Stéphanie
hal.structure.identifierMax Planck Institute of Molecular Plant Physiology [MPI-MP]
dc.contributor.authorGUENTHER, Manuela
hal.structure.identifierBiologie du fruit et pathologie [BFP]
dc.contributor.authorBELOUAH, Isma
hal.structure.identifierBiologie du fruit et pathologie [BFP]
hal.structure.identifierMetaboHUB
dc.contributor.authorPRIGENT, Sylvain
hal.structure.identifierBiologie du fruit et pathologie [BFP]
dc.contributor.authorBALDET, Pierre
hal.structure.identifierBiologie du fruit et pathologie [BFP]
hal.structure.identifierMetaboHUB
dc.contributor.authorGIBON, Yves
hal.structure.identifierBiologie du fruit et pathologie [BFP]
dc.contributor.authorPÉTRIACQ, Pierre
dc.date.issued2019
dc.identifier.issn1664-462X
dc.description.abstractEnCentral metabolism is the engine of plant biomass, supplying fruit growth with building blocks, energy, and biochemical cofactors. Among metabolic cornerstones, nicotinamide adenine dinucleotide (NAD) is particularly pivotal for electron transfer through reduction–oxidation (redox) reactions, thus participating in a myriad of biochemical processes. Besides redox functions, NAD is now assumed to act as an integral regulator of signaling cascades involved in growth and environmental responses. However, the regulation of NAD metabolism and signaling during fruit development remains poorly studied and understood. Here, we benefit from RNAseq and proteomic data obtained from nine growth stages of tomato fruit (var. Moneymaker) to dissect mRNA and protein profiles that link to NAD metabolism, including de novo biosynthesis, recycling, utilization, and putative transport. As expected for a cofactor synthesis pathway, protein profiles failed to detect enzymes involved in NAD synthesis or utilization, except for nicotinic acid phosphoribosyltransferase (NaPT) and nicotinamidase (NIC), which suggested that most NAD metabolic enzymes were poorly represented quantitatively. Further investigations on transcript data unveiled differential expression patterns during fruit development. Interestingly, among specific NAD metabolism-related genes, early de novo biosynthetic genes were transcriptionally induced in very young fruits, in association with NAD kinase, while later stages of fruit growth rather showed an accumulation of transcripts involved in later stages of de novo synthesis and in NAD recycling, which agreed with augmented NAD(P) levels. In addition, a more global overview of 119 mRNA and 78 protein significant markers for NAD(P)-dependent enzymes revealed differential patterns during tomato growth that evidenced clear regulations of primary metabolism, notably with respect to mitochondrial functions. Overall, we propose that NAD metabolism and signaling are very dynamic in the developing tomato fruit and that its differential regulation is certainly critical to fuel central metabolism linking to growth mechanisms.
dc.description.sponsorshipDéveloppement d'une infrastructure française distribuée pour la métabolomique dédiée à l'innovation - ANR-11-INBS-0010
dc.description.sponsorshipCentre français de phénomique végétale
dc.language.isoen
dc.publisherFrontiers
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subjectfruit
dc.subject.enNAD
dc.subject.endevelopment
dc.subject.enredox
dc.subject.entomato
dc.title.enRegulation of Pyridine Nucleotide Metabolism During Tomato Fruit Development Through Transcript and Protein Profiling.
dc.typeArticle de revue
dc.identifier.doi10.3389/fpls.2019.01201
dc.subject.halSciences du Vivant [q-bio]/Biologie végétale
bordeaux.journalFrontiers in Plant Science
bordeaux.page1201
bordeaux.volume10
bordeaux.peerReviewedoui
hal.identifierhal-02620533
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02620533v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Frontiers%20in%20Plant%20Science&rft.date=2019&rft.volume=10&rft.spage=1201&rft.epage=1201&rft.eissn=1664-462X&rft.issn=1664-462X&rft.au=DECROS,%20Guillaume&BEAUVOIT,%20Bertrand&COLOMBIE,%20Sophie&CABASSON,%20Cecile&BERNILLON,%20St%C3%A9phane&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée