Mostrar el registro sencillo del ítem

hal.structure.identifierBen-Gurion University of the Negev [BGU]
dc.contributor.authorRECHT, Lee
hal.structure.identifierMax Planck Institute of Molecular Plant Physiology [MPI-MP]
dc.contributor.authorTÖPFER, Nadine
hal.structure.identifierBen-Gurion University of the Negev [BGU]
dc.contributor.authorBATUSHANSKY, Albert
hal.structure.identifierBen-Gurion University of the Negev [BGU]
dc.contributor.authorSIKRON, Noga
hal.structure.identifierBen-Gurion University of the Negev [BGU]
dc.contributor.authorZARKA, Aliza
hal.structure.identifierBiologie du fruit et pathologie [BFP]
dc.contributor.authorGIBON, Yves
hal.structure.identifierMax Planck Institute of Molecular Plant Physiology [MPI-MP]
dc.contributor.authorNIKOLOSKI, Zoran
hal.structure.identifierBen-Gurion University of the Negev [BGU]
dc.contributor.authorFAIT, Aaron
hal.structure.identifierBen-Gurion University of the Negev [BGU]
dc.contributor.authorBOUSSIBA, Sammy
dc.date.issued2014
dc.identifier.issn0021-9258
dc.description.abstractEnThe green alga Haematococcus pluvialis accumulates large amounts of the antioxidant astaxanthin under inductive stress conditions, such as nitrogen starvation. The response to nitrogen starvation and high-light leads to the accumulation of carbohydrates and fatty acids, as well as increased activity of the tricarboxylic acid cycle. Although the behavior of individual pathways is well-investigated, little is known about the systemic effects of the stress-response mechanism. Here we present time-resolved metabolite, enzyme activity, and physiological data that capture the metabolic response of H. pluvialis under nitrogen starvation and high-light. The data were integrated into a putative genome-scale model of the green alga to in silico test the hypothesis of underlying carbon partitioning. The model-based hypothesis testing reinforces the involvement of starch degradation to support fatty acid synthesis in the later stages of the stress response. In addition, our findings support a possible mechanism for the involvement of the increased activity of the tricarboxylic acid cycle in carbon repartitioning. Finally, the in vitro experiments and the in silico modeling presented here emphasize the predictive power of large-scale integrative approaches to pinpoint metabolic adjustment to changing environments.
dc.language.isoen
dc.publisherAmerican Society for Biochemistry and Molecular Biology
dc.rights.urihttp://hal.archives-ouvertes.fr/licences/copyright/
dc.subjectHaematococcus pluvialis
dc.subjectmetabolomics
dc.subject.enalgae
dc.subject.encarbohydrate metabolism
dc.subject.encomputational biology
dc.subject.enconstraint-based modeling
dc.subject.endata integration
dc.subject.enfatty acid metabolism
dc.subject.ennitrogen starvation
dc.subject.ensystems biology
dc.title.enMetabolite Profiling and Integrative Modeling Reveal Metabolic Constraints for Carbon Partitioning under Nitrogen-Starvation in the Green Alga Haematococcus pluvialis.
dc.typeArticle de revue
dc.identifier.doi10.1074/jbc.M114.555144
dc.subject.halSciences du Vivant [q-bio]/Biologie végétale
bordeaux.journalJournal of Biological Chemistry
bordeaux.page30387-30403
bordeaux.volume289
bordeaux.issue44
bordeaux.peerReviewedoui
hal.identifierhal-02639565
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02639565v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Biological%20Chemistry&rft.date=2014&rft.volume=289&rft.issue=44&rft.spage=30387-30403&rft.epage=30387-30403&rft.eissn=0021-9258&rft.issn=0021-9258&rft.au=RECHT,%20Lee&T%C3%96PFER,%20Nadine&BATUSHANSKY,%20Albert&SIKRON,%20Noga&ZARKA,%20Aliza&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem