Show simple item record

hal.structure.identifierLaboratoire d'Electrochimie Moléculaire [LEM (UMR_7591)]
dc.contributor.authorPAIVA, Telmo
hal.structure.identifierLaboratoire d'Electrochimie Moléculaire [LEM (UMR_7591)]
dc.contributor.authorTORBENSEN, Kristian
hal.structure.identifierLaboratoire d'Electrochimie Moléculaire [LEM (UMR_7591)]
dc.contributor.authorPATEL, Anisha
hal.structure.identifierLaboratoire d'Electrochimie Moléculaire [LEM (UMR_7591)]
dc.contributor.authorANNE, Agnès
hal.structure.identifierLaboratoire d'Electrochimie Moléculaire [LEM (UMR_7591)]
dc.contributor.authorCHOVIN, Arnaud
hal.structure.identifierLaboratoire d'Electrochimie Moléculaire [LEM (UMR_7591)]
dc.contributor.authorDEMAILLE, Christophe
hal.structure.identifierBiologie du fruit et pathologie [BFP]
dc.contributor.authorBATAILLE, Laure
hal.structure.identifierBiologie du fruit et pathologie [BFP]
dc.contributor.authorMICHON, Thierry
dc.date.issued2020-07-02
dc.identifier.issn2155-5435
dc.description.abstractEnSurface-immobilized fd bacteriophage particles are used as scaffolds to coassemble the redox enzyme quinoprotein glucose dehydrogenase, PQQ-GDH, and its cosubstrate, PEG-tethered ferrocene. Individual decorated fd phages are visualized and simultaneously functionally interrogated by Mt/AFM-SECM microscopy, an in-situ local probe correlative imaging technique, combining atomic force (AFM) and electrochemical (SECM) microscopy in a mediator tethered (Mt) configuration. The statistical distribution of catalytic activity across the fd population is resolved, and the correlation between the functional properties of the phages and their actual dimensions assessed. Moreover, achievement of sub-particle resolution allows the enzymatic activity of individual viruses to be spatially mapped, revealing a highly active region located in the middle of the filamentous fd-scaffold. Quantitative modeling shows that this “catalytic hot-spot” arises from the interplay between charge transport by electron hopping between ferrocene moieties along the viral particles, and enzymatic catalysis. The developed model also enables complete analysis of GDH kinetics at the single bioscaffold scale, revealing differences in the functional behavior of the biocatalytic viral particles when addressed at the ensemble or at the single particle scale.
dc.description.sponsorshipImagerie électrochimique fonctionnelle de systèmes enzymatiques multi-composants organisés sur des virus nano-gabarits - ANR-14-CE09-0009
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.subject.enSingle entity electrochemistry
dc.subject.enPQQ-GDH
dc.subject.enBioscaffolding
dc.subject.enNanoparticle enhanced bioelectrocatalysis
dc.subject.enVirus nanotechnology
dc.title.enProbing the Enzymatic Activity of Individual Biocatalytic fd -Viral Particles by Electrochemical-Atomic Force Microscopy
dc.typeArticle de revue
dc.identifier.doi10.1021/acscatal.0c01920
dc.subject.halChimie
dc.subject.halChimie/Chimie analytique
dc.subject.halChimie/Catalyse
dc.subject.halChimie/Chimie théorique et/ou physique
bordeaux.journalACS Catalysis
bordeaux.page7843-7856
bordeaux.volume10
bordeaux.issue14
bordeaux.peerReviewedoui
hal.identifierhal-02893381
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02893381v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS%20Catalysis&rft.date=2020-07-02&rft.volume=10&rft.issue=14&rft.spage=7843-7856&rft.epage=7843-7856&rft.eissn=2155-5435&rft.issn=2155-5435&rft.au=PAIVA,%20Telmo&TORBENSEN,%20Kristian&PATEL,%20Anisha&ANNE,%20Agn%C3%A8s&CHOVIN,%20Arnaud&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record