Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience
DUSSARRAT, Thomas
Pontificia Universidad Católica de Chile [UC]
Biologie du fruit et pathologie [BFP]
See more >
Pontificia Universidad Católica de Chile [UC]
Biologie du fruit et pathologie [BFP]
DUSSARRAT, Thomas
Pontificia Universidad Católica de Chile [UC]
Biologie du fruit et pathologie [BFP]
< Reduce
Pontificia Universidad Católica de Chile [UC]
Biologie du fruit et pathologie [BFP]
Language
en
Article de revue
This item was published in
New Phytologist. 2022, vol. 234, n° 5, p. 1614-1628
Wiley
English Abstract
Current crop yield of the best ideotypes is stagnating and threatened by climate change. In this scenario, understanding wild plant adaptations in extreme ecosystems offers an opportunity to learn about new mechanisms for ...Read more >
Current crop yield of the best ideotypes is stagnating and threatened by climate change. In this scenario, understanding wild plant adaptations in extreme ecosystems offers an opportunity to learn about new mechanisms for resilience. Previous studies have shown species specificity for metabolites involved in plant adaptation to harsh environments. ●Here, we combined multi-species ecological metabolomics and machine learning-based generalised linear model predictions to link the metabolome to the plant environment in a set of 24 species and belonging to 14 families growing along an altitudinal gradient in the Atacama Desert. ●Thirty-nine common compounds predicted the plant environment with 79% accuracy, thus establishing the plant metabolome as an excellent integrative predictor of environmental fluctuations. These metabolites were independent of the species and validated both statistically and biologically using an independent dataset from a different sampling year. Thereafter, using multiblock predictive regressions, metabolites were linked to climatic and edaphic stressors like freezing temperature, water deficit and high solar irradiance. ●These findings indicate that plants from different evolutionary trajectories use a generic metabolic toolkit to face extreme environments. These core metabolites, also present in agronomic species, provide a unique metabolic goldmine for improving crop performances under abiotic pressure.Read less <
English Keywords
predictive metabolomics
plant metabolism
multiple species
extreme environments
adaptation
ANR Project
Développement d'une infrastructure française distribuée pour la métabolomique dédiée à l'innovation - ANR-11-INBS-0010
Centre français de phénomique végétale - ANR-11-INBS-0012
Centre français de phénomique végétale - ANR-11-INBS-0012
Origin
Hal imported