Electromechanical transition in quantum dots
Language
en
Article de revue
This item was published in
Physical Review B: Condensed Matter and Materials Physics (1998-2015). 2016-09-13, vol. 94, n° 12, p. 125417 (1-15)
American Physical Society
English Abstract
The strong coupling between electronic transport in a single-level quantum dot and a capacitively coupled nano-mechanical oscillator may lead to a transition towards a mechanically-bistable and blocked-current state. Its ...Read more >
The strong coupling between electronic transport in a single-level quantum dot and a capacitively coupled nano-mechanical oscillator may lead to a transition towards a mechanically-bistable and blocked-current state. Its observation is at reach in carbon-nanotube state-of-art experiments. In a recent publication [Phys. Rev. Lett. 115, 206802 (2015)] we have shown that this transition is characterized by pronounced signatures on the oscillator mechanical properties: the susceptibility, the displacement fluctuation spectrum and the ring-down time. These properties are extracted from transport measurements, however the relation between the mechanical quantities and the electronic signal is not always straightforward. Moreover the dependence of the same quantities on temperature, bias or gate voltage, and external dissipation has not been studied. The purpose of this paper is to fill this gap and provide a detailed description of the transition. Specifically we find: (i) The relation between the current-noise and the displacement spectrum. (ii) The peculiar behavior of the gate-voltage dependence of these spectra at the transition. (iii) The robustness of the transition towards the effect of external fluctuations and dissipation.Read less <
English Keywords
Single-electron tunneling
Electronic transport in mesoscopic systems
Micro- and nano-electromechanical systems (MEMS/NEMS) and devices
Coulomb blockade
Origin
Hal imported