Afficher la notice abrégée

hal.structure.identifierInstitute of Applied Radiation Chemistry
dc.contributor.authorABRAMCZYK, Halina
hal.structure.identifierInstitute of Applied Radiation Chemistry
dc.contributor.authorBROZEK-PLUSKA, Beata
hal.structure.identifierInstitute of Applied Radiation Chemistry
dc.contributor.authorSURMACKI, Jakub
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorTONDUSSON, Marc
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorFREYSZ, Eric
dc.date.created2015-10-19
dc.date.issued2017
dc.identifier.issn1010-6030
dc.description.abstractEnZinc tetrasulfonated phthalocyanine (ZnPcS4), was studied in aqueous solutions, films and at the biological interfaces of noncancerous and cancerous human breast tissues by using steady-state and time-resolved spectroscopy methods, including IR, Raman, UV–vis, fluorescence and transient absorption femtosecond pump-probe spectroscopy. The pump-probe transient absorption spectra were recorded on time scales from femtoseconds to nanoseconds providing insight into the molecular mechanisms of energy dissipation and primary events occurring in solution, film, and at the interface of the biological tissues. The nature of the rapid processes and competing relaxation pathways resulting from the initially excited electronic states of ZnPcS4 in aqueous solutions, films and at the biological interfaces of cancerous and noncancerous human breast tissues was studied. The results provide evidence that the sulfonated zinc phthalocyanine dissipates energy through different pathways in the environment of the noncancerous tissue and of the cancerous tissue. A detailed understanding of the paths of energy dissipation will reveal the mechanisms underlying light-induced signal transduction and the role of photoreceptors in photostability of living cells. Here, we showed that both the dynamics of the ground state S0 recovery and the dynamics of the first excited state S1 decay at the interfacial regions of the noncancerous tissue is markedly faster than that in the cancerous tissue, suggesting that the molecular mechanisms responsible for harvesting the light energy in photosensitizers can be used for practical applications in cancer diagnostics. The paper bridges the fundamentals of cancer research with the femtosecond technologies of high temporal resolution for studying dynamics of photosensitizers in noncancerous and cancerous human breast tissues.
dc.language.isoen
dc.publisherElsevier
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/
dc.subject.enPDT photosensitizers
dc.subject.enFemtosecond pump-probe transient absorption
dc.subject.enPhthalocyanines
dc.subject.enPhotodynamic therapy
dc.subject.enRaman and IR spectroscopy
dc.subject.enBreast cancer
dc.title.enPhotostability of biological systems—Femtosecond dynamics of zinc tetrasulfonated phthalocyanine at cancerous and noncancerous human Breast tissues
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jphotochem.2016.08.012
dc.subject.halPhysique [physics]/Physique [physics]/Biophysique [physics.bio-ph]
dc.subject.halChimie/Autre
bordeaux.journalJournal of Photochemistry and Photobiology A: Chemistry
bordeaux.page10 - 24
bordeaux.volume332
bordeaux.peerReviewedoui
hal.identifierhal-01382740
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01382740v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Photochemistry%20and%20Photobiology%20A:%20Chemistry&rft.date=2017&rft.volume=332&rft.spage=10%20-%2024&rft.epage=10%20-%2024&rft.eissn=1010-6030&rft.issn=1010-6030&rft.au=ABRAMCZYK,%20Halina&BROZEK-PLUSKA,%20Beata&SURMACKI,%20Jakub&TONDUSSON,%20Marc&FREYSZ,%20Eric&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée