Afficher la notice abrégée

hal.structure.identifierDepartment of Mechanical Science and Engineering [Urbana]
dc.contributor.authorTRAN, Tuan
hal.structure.identifierDepartment of Geology
dc.contributor.authorCHAKRABORTY, Pinaki
hal.structure.identifierDepartment of Physics
dc.contributor.authorGUTTENBERG, Nicholas
hal.structure.identifierDepartment of Physics and Astronomy [Pittsburgh]
dc.contributor.authorPRESCOTT, Alisia
hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorKELLAY, Hamid
hal.structure.identifierDepartment of Physics and Astronomy [Pittsburgh]
dc.contributor.authorGOLDBURG, Walter
hal.structure.identifierDepartment of Physics
dc.contributor.authorGOLDENFELD, Nigel
hal.structure.identifierDepartment of Mechanical Science and Engineering [Urbana]
dc.contributor.authorGIOIA, Gustavo
dc.date.created2009-08-25
dc.date.issued2010
dc.identifier.issn1745-2473
dc.description.abstractEnThere is a missing link between the macroscopic properties of turbulent flows(1-4), such as the frictional drag(5) of a wall-bounded flow, and the turbulent spectrum(1,6,7). The turbulent spectrum is a power law of exponent alpha (the 'spectral exponent') that gives the characteristic velocity of a turbulent fluctuation (or 'eddy') of size s as a function of s (ref. 1). Here we seek the missing link by comparing the frictional drag in soap-film flows(8), where alpha = 3 (refs 9,10), and in pipe flows(5), where alpha = 5/3 (refs 11,12). For moderate values of the Reynolds number Re, we find experimentally that in soap-film flows the frictional drag scales as Re-1/2, whereas in pipe flows the frictional drag scales(13) as Re-1/4. Each of these scalings may be predicted from the attendant value of a by using a new theory(14-16), in which the frictional drag is explicitly linked to the turbulent spectrum.
dc.language.isoen
dc.publisherNature Publishing Group
dc.rights.urihttp://creativecommons.org/licenses/by-sa/
dc.title.enMacroscopic effects of the spectral structure in turbulent flows
dc.typeArticle de revue
dc.identifier.doi10.1038/NPHYS1674
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
dc.subject.halPhysique [physics]/Physique [physics]/Dynamique des Fluides [physics.flu-dyn]
bordeaux.journalNature Physics
bordeaux.page438-441
bordeaux.volume6
bordeaux.peerReviewedoui
hal.identifierhal-00672181
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00672181v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nature%20Physics&rft.date=2010&rft.volume=6&rft.spage=438-441&rft.epage=438-441&rft.eissn=1745-2473&rft.issn=1745-2473&rft.au=TRAN,%20Tuan&CHAKRABORTY,%20Pinaki&GUTTENBERG,%20Nicholas&PRESCOTT,%20Alisia&KELLAY,%20Hamid&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée