Asymptotic delta-Parametrization of Surface-Impedance Solutions
PÉRON, Victor
Laboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Voir plus >
Laboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
PÉRON, Victor
Laboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
< Réduire
Laboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Proceedings of the 16th Biennial IEEE Conference on Electromagnetic Field Computation, Proceedings of the 16th Biennial IEEE Conference on Electromagnetic Field Computation, IEEE CEFC, 2014-05-28, Annecy. 2014-05-25
Résumé en anglais
The surface impedance methods are among the most efficient for solving time-harmonic eddy-current problems with a small penetration depth. When the solution is required for a wide range of frequencies (or material ...Lire la suite >
The surface impedance methods are among the most efficient for solving time-harmonic eddy-current problems with a small penetration depth. When the solution is required for a wide range of frequencies (or material conductivities) the standard approach leads to the solution of a complex-valued problem for each frequency (or conductivity). Hereafter we introduce a close method, parametrized by the skin depth ( delta), based on a formal asymptotic expansion. It provides accurate results with a reduced computational cost for a wide range of delta values.< Réduire
Mots clés en anglais
parametric solutions
asymptotics
Surface impedance
Origine
Importé de halUnités de recherche