An interpolation theorem in toric varieties
WEIMANN, Martin
Laboratoire Bordelais d'Analyse et Géométrie [LaBAG]
Laboratoire de Mathématiques Nicolas Oresme [LMNO]
Université de Caen Normandie [UNICAEN]
Laboratoire Bordelais d'Analyse et Géométrie [LaBAG]
Laboratoire de Mathématiques Nicolas Oresme [LMNO]
Université de Caen Normandie [UNICAEN]
WEIMANN, Martin
Laboratoire Bordelais d'Analyse et Géométrie [LaBAG]
Laboratoire de Mathématiques Nicolas Oresme [LMNO]
Université de Caen Normandie [UNICAEN]
< Reduce
Laboratoire Bordelais d'Analyse et Géométrie [LaBAG]
Laboratoire de Mathématiques Nicolas Oresme [LMNO]
Université de Caen Normandie [UNICAEN]
Language
en
Article de revue
This item was published in
Annales de l'Institut Fourier. 2008, vol. 58, n° 4
Association des Annales de l'Institut Fourier
English Abstract
In the spirit of a theorem of Wood, we give necessary and sufficient conditions for a family of germs of analytic hypersurfaces in a smooth projective toric variety X to be interpolated by an algebraic hypersurface with a ...Read more >
In the spirit of a theorem of Wood, we give necessary and sufficient conditions for a family of germs of analytic hypersurfaces in a smooth projective toric variety X to be interpolated by an algebraic hypersurface with a fixed class in the Picard group of X.Read less <
Origin
Hal imported