Interaction of a quantum-dot cavity system with acoustic phonons: Stronger light-matter coupling can reduce the visibility of strong coupling effects
CROITORU, Mihail D.
Institut für Theroetische Physik III
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
< Reduce
Institut für Theroetische Physik III
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Language
en
Article de revue
This item was published in
Physical Review B: Condensed Matter and Materials Physics (1998-2015). 2012, vol. 86, n° 3, p. 035319
American Physical Society
English Abstract
We present a numerically complete study of the combined dynamics of a quantum dot exciton coupled to a single quantized cavity mode and a continuum of acoustic phonons. We demonstrate that acoustic phonons have a pronounced ...Read more >
We present a numerically complete study of the combined dynamics of a quantum dot exciton coupled to a single quantized cavity mode and a continuum of acoustic phonons. We demonstrate that acoustic phonons have a pronounced impact on effects characteristic of the strong light-matter coupling regime, such as vacuum Rabi oscillations and collapse and revival scenarios. This impact is considerable already at zero temperature, where initially no phonons are present. Counterintuitively it is found that an increase of the light-matter coupling does not necessarily enhance the visibility of strong-coupling effects. In fact, for typical experimental situations, a stronger light-matter coupling will considerably reduce the visibility.Read less <
English Keywords
Quantum dots
Optical transient phenomena: quantum beats - photon echo - free-induction decay - dephasings and revivals - optical nutation and self-induced transparency
Cavity quantum electrodynamics
micromasers
Piezo-optical - elasto-optical - acousto-optical and photoelastic effects
European Project
Superconductivity in quantum-size regime
Origin
Hal imported