Provably Secure Non-Interactive Key Distribution Based on Pairings
DUPONT, Régis
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Algorithmic number theory for cryptology [TANC]
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Algorithmic number theory for cryptology [TANC]
ENGE, Andreas
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Algorithmic number theory for cryptology [TANC]
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Algorithmic number theory for cryptology [TANC]
DUPONT, Régis
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Algorithmic number theory for cryptology [TANC]
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Algorithmic number theory for cryptology [TANC]
ENGE, Andreas
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Algorithmic number theory for cryptology [TANC]
< Reduce
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Algorithmic number theory for cryptology [TANC]
Language
en
Article de revue
This item was published in
Discrete Applied Mathematics. 2006, vol. 154, n° 2, p. 270-276
Elsevier
English Abstract
We define a security notion for non-interactive key distribution protocols. We identify an apparently hard computational problem related to pairings, the Bilinear Diffie--Hellman problem (BDH). After extending Sakai, ...Read more >
We define a security notion for non-interactive key distribution protocols. We identify an apparently hard computational problem related to pairings, the Bilinear Diffie--Hellman problem (BDH). After extending Sakai, Ohgishi, and Kasahara's pairing based protocol to a slightly more general setting, we show that breaking the system is polynomially equivalent to solving BDH in the random oracle model and thus establish a security proof.Read less <
English Keywords
key distribution
non-interactive
identity based cryptography
pairings
security proof
random oracle model
Origin
Hal imported