Noninteracting fermions in a trap and random matrix theory
DOUSSAL, Pierre Le
Laboratoire de Physique Théorique de l'ENS [École Normale Supérieure] [LPTENS]
Champs Aléatoires et Systèmes hors d'Équilibre
See more >
Laboratoire de Physique Théorique de l'ENS [École Normale Supérieure] [LPTENS]
Champs Aléatoires et Systèmes hors d'Équilibre
DOUSSAL, Pierre Le
Laboratoire de Physique Théorique de l'ENS [École Normale Supérieure] [LPTENS]
Champs Aléatoires et Systèmes hors d'Équilibre
< Reduce
Laboratoire de Physique Théorique de l'ENS [École Normale Supérieure] [LPTENS]
Champs Aléatoires et Systèmes hors d'Équilibre
Language
en
Article de revue
This item was published in
Journal of Physics A: Mathematical and General (1975 - 2006). 2019-03-14, vol. 52, n° 14, p. 144006 (1-32)
IOP Publishing
English Abstract
We review recent advances in the theory of trapped fermions using techniques borrowed from random matrix theory (RMT) and, more generally, from the theory of determinantal point processes. In the presence of a trap, and ...Read more >
We review recent advances in the theory of trapped fermions using techniques borrowed from random matrix theory (RMT) and, more generally, from the theory of determinantal point processes. In the presence of a trap, and in the limit of a large number of fermions $N \gg 1$, the spatial density exhibits an edge, beyond which it vanishes. While the spatial correlations far from the edge, i.e. close to the center of the trap, are well described by standard many-body techniques, such as the local density approximation (LDA), these methods fail to describe the fluctuations close to the edge of the Fermi gas, where the density is very small and the fluctuations are thus enhanced. It turns out that RMT and determinantal point processes offer a powerful toolbox to study these edge properties in great detail. Here we discuss the principal edge universality classes, that have been recently identified using these modern tools. In dimension $d=1$ and at zero temperature $T=0$, these universality classes are in one-to-one correspondence with the standard universality classes found in the classical unitary random matrix ensembles: soft edge (described by the "Airy kernel") and hard edge (described by the "Bessel kernel") universality classes. We further discuss extensions of these results to higher dimensions $d\geq 2$ and to finite temperature. Finally, we discuss correlations in the phase space, i.e., in the space of positions and momenta, characterized by the so called Wigner function.Read less <
ANR Project
Matrices aléatoires et fermions piégés - ANR-17-CE30-0027
Origin
Hal imported