Optimization of the Hölder Image Descriptor using a Genetic Algorithm
LEGRAND, Pierrick
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
OLAGUE, Gustavo
Centro de Investigacion Cientifica y de Education Superior de Ensenada [Mexico] [CICESE]
Voir plus >
Centro de Investigacion Cientifica y de Education Superior de Ensenada [Mexico] [CICESE]
LEGRAND, Pierrick
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
OLAGUE, Gustavo
Centro de Investigacion Cientifica y de Education Superior de Ensenada [Mexico] [CICESE]
Centro de Investigacion Cientifica y de Education Superior de Ensenada [Mexico] [CICESE]
PÉREZ, Cynthia
Centro de Investigacion Cientifica y de Education Superior de Ensenada [Mexico] [CICESE]
< Réduire
Centro de Investigacion Cientifica y de Education Superior de Ensenada [Mexico] [CICESE]
Langue
en
Communication dans un congrès
Ce document a été publié dans
GECCO 2010. Best paper award in "Real world applications"., 2010-07-07, Portland Oregon. 2010, vol. ISBN 978-1-4503-0072-8, p. 1147-1154
Résumé en anglais
Local image features can provide the basis for robust and invariant recognition of objects and scenes. Therefore, compact and distinctive representations of local shape and appearance has become invaluable in modern computer ...Lire la suite >
Local image features can provide the basis for robust and invariant recognition of objects and scenes. Therefore, compact and distinctive representations of local shape and appearance has become invaluable in modern computer vision. In this work,we study a local descriptor based on the Hölder exponent, a measure of signal regularity. The proposal is to find an optimal number of dimensions for the descriptor using a genetic algorithm (GA). To guide the GA search, fitness is computed based on the performance of the descriptor when applied to standard region matching problems. This criterion is quantified using the F-Measure, derived from recall and precision analysis. Results show that it is possible to reduce the size of the canonical Hölder descriptor without degrading the quality of its performance. In fact, the best descriptor found through the GA search is nearly 70% smaller and achieves similar performance on standard tests.< Réduire
Origine
Importé de halUnités de recherche