The estimation of Hölderian regularity using genetic programming
LEGRAND, Pierrick
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
LÉVY VÉHEL, Jacques
Probabilistic modelling of irregularity and application to uncertainties management [ Regularity ]
Mathématiques Appliquées aux Systèmes - EA 4037 [MAS]
Probabilistic modelling of irregularity and application to uncertainties management [ Regularity ]
Mathématiques Appliquées aux Systèmes - EA 4037 [MAS]
LEGRAND, Pierrick
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
LÉVY VÉHEL, Jacques
Probabilistic modelling of irregularity and application to uncertainties management [ Regularity ]
Mathématiques Appliquées aux Systèmes - EA 4037 [MAS]
< Réduire
Probabilistic modelling of irregularity and application to uncertainties management [ Regularity ]
Mathématiques Appliquées aux Systèmes - EA 4037 [MAS]
Langue
en
Communication dans un congrès
Ce document a été publié dans
GECCO'10 Proceedings of the 12th annual conference on Genetic and evolutionary computation, GECCO'10 Proceedings of the 12th annual conference on Genetic and evolutionary computation, Genetic and Evolutionary Computation Conference (GECCO 2010). Best Paper Award in "Genetic Programming", 2010-07-07, Portland Oregon. 2010, vol. ISBN 978-1-4503-0072-8, p. 861-868
Résumé en anglais
This paper presents a Genetic Programming (GP) approach to synthesize estimators for the pointwise Hölder exponent in 2D signals. It is known that irregularities and singularities are the most salient and informative parts ...Lire la suite >
This paper presents a Genetic Programming (GP) approach to synthesize estimators for the pointwise Hölder exponent in 2D signals. It is known that irregularities and singularities are the most salient and informative parts of a signal. Hence, explicitly measuring these variations can be important in various domains of signal processing. The pointwise Hölder exponent provides a characterization of these types of features. However, current methods for estimation cannot be considered to be optimal in any sense. Therefore, the goal of this work is to automatically synthesize operators that provide an estimation for the Hölderian regularity in a 2D signal. This goal is posed as an optimization problem in which we attempt to minimize the error between a prescribed regularity and the estimated regularity given by an image operator. The search for optimal estimators is then carried out using a GP algorithm. Experiments confirm that the GP-operators produce a good estimation of the Hölder exponent in images of multifractional Brownian motions. In fact, the evolved estimators significantly outperform a traditional method by as much as one order of magnitude. These results provide further empirical evidence that GP can solve difficult problems of applied mathematics.< Réduire
Origine
Importé de halUnités de recherche