Classification de données EEG par algorithme évolutionnaire pour l'étude d'états de vigilance
VEZARD, Laurent
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
LEGRAND, Pierrick
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
CHAVENT, Marie
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Voir plus >
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
VEZARD, Laurent
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
LEGRAND, Pierrick
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
CHAVENT, Marie
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Langue
fr
Article de revue
Ce document a été publié dans
Revue des Nouvelles Technologies de l'Information. 2012, vol. 23, p. 459-470
Editions RNTI
Résumé
L'objectif de ce travail est de prédire l'état de vigilance d'un individu à partir de l'étude de son activité cérébrale (signaux d'électro-encéphalographie EEG). La variable à prédire est binaire (état de vigilance "normal" ...Lire la suite >
L'objectif de ce travail est de prédire l'état de vigilance d'un individu à partir de l'étude de son activité cérébrale (signaux d'électro-encéphalographie EEG). La variable à prédire est binaire (état de vigilance "normal" ou "relaxé"). Des EEG de 44 participants dans les deux états (88 enregistrements), ont été recueillis via un casque à 58 électrodes. Après une étape de prétraitement et de validation des données, un critère nommé "critère des pentes" a été choisi. Des méthodes de classification supervisée usuelles (k plus proches voisins, arbres binaires de décision (CART), forêts aléatoires, PLS et sparse PLS discriminante) ont été appliquées afin de fournir des prédictions de l'état des participants. Le critère utilisé a ensuite été raffiné grâce à un algorithme génétique, ce qui a permis de construire un modèle fiable (taux de bon classement moyen par CART égal à 86.68 +- 1.87%) et de sélectionner une électrode parmi les 58 initiales.< Réduire
Origine
Importé de halUnités de recherche